login
Decimal expansion of log_2((611 + sqrt(73))/36)/2.
8

%I #10 Oct 31 2023 11:14:19

%S 2,0,5,2,5,6,8,9,7,1,6,1,2,7,3,5,6,6,5,1,0,7,8,7,1,5,4,0,4,7,8,6,5,5,

%T 8,7,1,0,5,3,8,4,8,7,6,2,3,7,1,2,2,1,4,3,8,8,9,2,9,8,0,3,2,7,7,4,1,7,

%U 9,0,8,2,0,0,4,1,2,0,7,1,0,4,6,5,9,3,2,3,6,3

%N Decimal expansion of log_2((611 + sqrt(73))/36)/2.

%H S. Yu. Orevkov, <a href="https://arxiv.org/abs/2201.12827">Counting lattice triangulations: Fredholm equations in combinatorics</a>, arXiv:2201.12827 [math.CO], 2022. See Theorem 1, p. 2.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%F Equals log_2(alpha)/2, where alpha = lim_{n->oo} A082640(2, n)^(1/n).

%e 2.052568971612735665107871540478655871...

%t First[RealDigits[N[Log[2,(611+Sqrt[73])/36]/2,90]]]

%o (PARI) log((611 + sqrt(73))/36)/log(4) \\ _Charles R Greathouse IV_, Oct 31 2023

%Y Cf. A010525, A082640.

%Y Cf. A351480, A351482, A351483.

%Y Cf. A351484, A351485, A351486, A351487, A351488.

%K nonn,cons

%O 1,1

%A _Stefano Spezia_, Feb 12 2022