%I #18 Jun 21 2024 17:30:49
%S 1,1,1,262145,1,1,1,262145,387420490,1,1,262145,1,1,1,68719738881,1,
%T 387420490,1,262145,1,1,1,262145,3814697265626,1,387420490,262145,1,1,
%U 1,68719738881,1,1,1,101560344351050,1,1,1,262145,1,1,1,262145,387420490,1,1,68719738881
%N Sum of the 9th powers of the square divisors of n.
%C Inverse Möbius transform of n^9 * c(n), where c(n) is the characteristic function of squares (A010052). - _Wesley Ivan Hurt_, Jun 21 2024
%H Michael De Vlieger, <a href="/A351315/b351315.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = Sum_{d^2|n} (d^2)^9.
%F Multiplicative with a(p) = (p^(18*(1+floor(e/2))) - 1)/(p^18 - 1). - _Amiram Eldar_, Feb 07 2022
%F From _Amiram Eldar_, Sep 20 2023: (Start)
%F Dirichlet g.f.: zeta(s) * zeta(2*s-18).
%F Sum_{k=1..n} a(k) ~ (zeta(19/2)/19) * n^(19/2). (End)
%F a(n) = Sum_{d|n} d^9 * c(d), where c = A010052. - _Wesley Ivan Hurt_, Jun 21 2024
%e a(16) = 68719738881; a(16) = Sum_{d^2|16} (d^2)^9 = (1^2)^9 + (2^2)^9 + (4^2)^9 = 68719738881.
%t f[p_, e_] := (p^(18*(1 + Floor[e/2])) - 1)/(p^18 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Feb 07 2022 *)
%Y Sum of the k-th powers of the square divisors of n for k=0..10: A046951 (k=0), A035316 (k=1), A351307 (k=2), A351308 (k=3), A351309 (k=4), A351310 (k=5), A351311 (k=6), A351313 (k=7), A351314 (k=8), this sequence (k=9), A351316 (k=10).
%Y Cf. A010052.
%K nonn,easy,mult
%O 1,4
%A _Wesley Ivan Hurt_, Feb 06 2022