login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{i=0..10^n-1} i^3.
3

%I #27 Jan 27 2022 20:49:35

%S 0,2025,24502500,249500250000,2499500025000000,24999500002500000000,

%T 249999500000250000000000,2499999500000025000000000000,

%U 24999999500000002500000000000000,249999999500000000250000000000000000,2499999999500000000025000000000000000000

%N a(n) = Sum_{i=0..10^n-1} i^3.

%C These terms k = x.y satisfy equation x.y = (x+y)^2, when x and y have the same number of digits, "." means concatenation, and y may not begin with 0. So, this is a subsequence of A350870 and A238237.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (11100,-11100000,1000000000).

%F a(n) = 10^(2n) * (10^n-1)^2 / 4 = A037182(n)^2.

%F a(n) = A000217(10^n-1)^2.

%F a(n) = A038544(n) - 10^(3*n).

%e a(1) = Sum_{i=0..9} i^3 = (Sum_{i=0..9} i)^2 = 2025.

%t a[n_] := (10^n*(10^n - 1)/2)^2; Array[a, 11, 0] (* _Amiram Eldar_, Jan 20 2022 *)

%o (PARI) a(n) = my(x=10^n-1); (x*(x+1)/2)^2; \\ _Michel Marcus_, Jan 22 2022

%Y Cf. A000217, A037156, A037182, A038544, A238237.

%K nonn,base,easy

%O 0,2

%A _Bernard Schott_, Jan 20 2022