Lemma. (1) The only solutions to

$$x^4 - 2y^2 = 1$$

are $(x, y) = (\pm 1, 0)$. (2) The only solutions to

$$x^4 - 2y^2 = -1$$

are $(x, y) = (\pm 1, \pm 1)$. (3) The only solutions to

$$x^2 - 2y^4 = 1$$

are $(x, y) = (\pm 1, 0)$. (4) The only solutions to

$$x^2 - 2y^4 = -1$$

are $(x, y) = (\pm 1, \pm 1), (\pm 239, \pm 13).$

Proof. (1) Let $X = 2x^2$, Y = 4xy, then

$$Y^2 = X^3 - 4X.$$

Type E=ellinit([0,0,0,-4,0]); ellanalyticrank(E); elltors(E); in PARI/GP to see that this is an elliptic curve with rank 0 and torsion group $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, so the only solutions (X,Y) are $(X,Y) = (0,0), (\pm 2,0)$, corresponding to $(x,y) = (\pm 1,0)$. (See also https://www.lmfdb.org/EllipticCurve/Q/64/a/3 for the integral points on the elliptic curve).

Alternative elementary solution. Let

$$L_0 = 1, \quad L_1 = 1, \quad L_{n+2} = 2L_{n+1} + L_n, \quad \forall n \in \mathbb{N} \quad (A001333);$$

$$P_0 = 0, \quad P_1 = 1, \quad P_{n+2} = 2P_{n+1} + P_n, \quad \forall n \in \mathbb{N} \quad (A000129),$$

then all solutions to $x^2 - 2y^2 = 1$ are given by $(x, y) = (L_{2k}, P_{2k})$, and all solutions to $x^2 - 2y^2 = -1$ are given by $(x, y) = (L_{2k+1}, P_{2k+1})$. Note that $L_{2k} = 2L_k^2 + (-1)^{k-1}$, so if $L_{2k} = x_0^2$ is a square, then (x_0, L_k) itself satisfies $x^2 - 2y^2 = (-1)^{k-1}$, so $(x_0, L_k) = (L_m, P_m)$ for some $m \equiv k - 1 \pmod{2}$. But we have $2 = P_2 < L_2 < P_3 < L_3 < \cdots$, so the only possibility is k = 0 and m = 1, and $x_0 = 1$.

(2) Let $X = 2x^2$, Y = 4xy, then

$$Y^2 = X^3 + 4X.$$

Type E=ellinit([0,0,0,4,0]); ellanalyticrank(E); elltors(E); in PARI/GP to see that this is an elliptic curve with rank 0 and torsion group $\mathbb{Z}/4\mathbb{Z}$, so the only solutions (X,Y) are $(X,Y) = (0,0), (2,\pm 4)$, corresponding to $(x,y) = (\pm 1,\pm 2)$. (See also https://www.lmfdb.org/EllipticCurve/Q/32/a/4 for the integral points on the elliptic curve).

(3) Let $X = 2y^2$, Y = 2xy, then

$$Y^2 = X^3 + 2X.$$

Type E=ellinit([0,0,0,2,0]); ellanalyticrank(E); elltors(E); in PARI/GP to see that this is an elliptic curve with rank 0 and torsion group $\mathbb{Z}/2\mathbb{Z}$, so the only solutions (X, Y) are (X, Y) = (0, 0), corresponding to $(x, y) = (\pm 1, 0)$. (See also https://www.lmfdb.org/EllipticCurve/Q/256/c/2 for the integral points on the elliptic curve).

Alternative elementary solution. Note that $gcd(L_n, P_n) = 1$ for all $n \in \mathbb{N}$ (where $\{L_n\}$ and $\{P_n\}$ are defined in the proof of (1)), and $P_{2k} = 2L_kP_k$. If P_{2k} is a square, then since L_k is odd, both L_k and $2P_k$ must be squares. We deduce then that k is even (otherwise $2P_k \equiv 2 \pmod{4}$). But (1) shows that L_k cannot be a square for even k unless k = 0. (4) Let $X = 2y^2$, Y = 2xy, then

$$Y^2 = X^3 - 2X.$$

This is an elliptic curve with rank 1, and the integral points are given in https://www.lmfdb. org/EllipticCurve/Q/256/b/1 as $(X,Y) = (-1,\pm 1), (0,0), (2,\pm 2), (338,\pm 6214)$, corresponding to $(x,y) = (\pm 1,\pm 1), (\pm 239,\pm 13)$. (See https://www.impan.pl/en/publishing-house/ journals-and-series/colloquium-mathematicum/all/109/1/87140 for a complete proof of the integral points on the elliptic curve).

Theorem. Let N be a even number such that N/2 has only prime factors congruent to 1 modulo 4, then

$$d(p^2 - 1) = N$$

has no odd solutions p other than $d(7^2 - 1) = 10$ and $d(9^2 - 1) = 10$, where d(n) (A000005) is the number of divisors of n.

Proof. In general, let

 $N_{m,r} := \{N : \text{all except one prime factors of } N \text{ are congruent to } 1 \text{ modulo } m, \\ \text{and one prime factor of } N \text{ is congruent to } 1 + r \text{ modulo } m\}, \quad 0 \le r \le m - 1,$

then $d(n) \in N_{m,r}$ implies that $n = m^k p^r$ for some $m \in \mathbb{N}$ and prime p. Indeed, if we write $N \in N_{m,r}$ as a product of numbers ≥ 2 arbitrarily, then one factor is congruent to 1 + r modulo m and the others are congruent to 1 modulo m, so d(n) = N implies that one prime factor of n has multiplicity congruent to r modulo m and the other prime factors have multiplicities divisible by m.

Here we have $N \in N_{4,1}$. Since $8 \mid p^2 - 1$ for odd p, if $d(p^2 - 1) = N$, then

$$p^2 - 1 = 16m^4P$$

for $m \in \mathbb{N}$ and prime P. (Here m can be even, and P can be a factor of 2m). Since gcd(p-1, p+1) = 2, we have

$$\begin{cases} p \pm 1 = 8M^4P \\ p \mp 1 = 2N^4 \end{cases} \quad \text{or} \quad \begin{cases} p \pm 1 = 8M^4 \\ p \mp 1 = 2N^4P \end{cases}$$

for some gcd(2MP, N) = 1 in the first case and gcd(2M, NP) = 1 in the second case. In the first case we have

$$N^4 - 4M^4P = \pm 1,$$

so in particular $N^4 - 4M^2P = 1$ by modulo 4, or $(N^2 - 1)(N^2 + 1) = 4M^4P$. Since $gcd(N^2 - 1, N^2 + 1) = 2$, we have

$$\begin{cases} N^2 \pm 1 = 2M_1^4 P \\ N^2 \mp 1 = 2M_2^4 \end{cases}$$

which has only solutions $(M_2, N) = (13, 239)$ by the parts (3) (4) in the Lemma since N > 1, corresponding to $M_1^4 P = 28560$ which is impossible. In the second case we have

$$N^4 P - 4M^4 = \pm 1.$$

If
$$N^4P = 4M^4 - 1 = (2M^2 - 1)(2M^2 + 1)$$
, then $gcd(2M^2 - 1, 2M^2 + 1) = 1$ implies that

$$\begin{cases} 2M^2 \pm 1 = N_1^4 P \\ 2M^2 \mp 1 = N_2^4 \end{cases}$$

which has only solutions $(M, N_2) = (1, 1)$ by the parts (1) (2) in the Lemma, corresponding to $M_1 = 1$ and P = 3. If $N^4P = 4M^4 + 1 = (2M^2 - 2M + 1)(2M^2 + 2M + 1)$, then $gcd(2M^2 - 2M + 1, 2M^2 + 2M + 1) = gcd(2M^2 - 2M + 1, 4M) = gcd(2M^2 - 2M + 1, M) = 1$ implies that

$$\begin{cases} 2M^2 \mp 2M + 1 = N_1^4 P \\ 2M^2 \pm 2M + 1 = N_2^4 \end{cases}$$

or

$$(2M\pm 1)^2 - 2N_2^4 = -1.$$

The solutions to the last equation are $(M, N_2) = (1, 1), (119, 13), (120, 13)$ by the parts (4) in the Lemma, corresponding to $N_1^4 P = 5, 28085, 29041$ where the last two are not possible. In conclusion, we have

$$\begin{cases} p+1 = 8 \\ p-1 = 6 \end{cases} \quad \text{or} \quad \begin{cases} p-1 = 8; \\ p+1 = 10, \end{cases}$$

so p = 7 or p = 9.

Similarly, let $r \ge 3$ be an odd number, and suppose that N be a even number such that N/2 has only prime factors congruent to 1 modulo 2r, then if $d(p^2 - 1) = N$ for some odd p, then

$$p^2 - 1 = 2^{2r} m^{2r} P$$

for $m \in \mathbb{N}$ and prime P, and we have

$$\begin{cases} p \pm 1 = 2^{2r-1}M^{2r}P \\ p \mp 1 = 2N^{2r} \end{cases} \text{ or } \begin{cases} p \pm 1 = 2^{2r-1}M^{2r}; \\ p \mp 1 = 2N^{2r}P, \end{cases}$$

corresponding to

$$\begin{split} p &= 2N^{2r} + 1, \quad 2^{2r-2}M^{2r}P = N^{2r} - 1; \\ p &= 2^{2r-1}M^{2r} - 1, \quad N^{2r}P = 2^{2r-2}M^{2r} - 1; \\ p &= 2^{2r-1}M^{2r} + 1, \quad N^{2r}P = 2^{2r-2}M^{2r} + 1 \end{split}$$

(note that $N^{2r} - 2^{2r-2}M^{2r}P = -1$ is impossible modulo 2^{2r-2}). We have then

$$p = 2N^{2r} + 1, \quad \begin{cases} 2^{2r-3}M_1^{2r}P &= N^r - 1;\\ 2M_2^{2r} &= N^r + 1, \end{cases}$$
(1)

$$p = 2N^{2r} + 1, \quad \begin{cases} 2^{2r-3}M_1^{2r} = N^r - 1; \\ 2M_2^{2r}P = N^r + 1, \end{cases}$$
(2)

$$p = 2^{2r-1}M^{2r} - 1, \quad \begin{cases} N_1^{2r}P &= 2^{r-1}M^r - 1; \\ N_2^{2r} &= 2^{r-1}M^r + 1, \end{cases}$$
(3)

$$p = 2^{2r-1}M^{2r} + 1, \quad N^{2r}P = 2^{2r-2}M^{2r} + 1$$
 (4)

(note that
$$\begin{cases} 2^{2r-3}M_1^{2r}P &= N^r + 1\\ 2M_2^{2r} &= N^r - 1 \end{cases}$$
 and
$$\begin{cases} 2^{2r-3}M_1^{2r} &= N^r + 1\\ 2M_2^{2r}P &= N^r - 1 \end{cases}$$
 is impossible modulo 2^{2r-4}
in (??) and (??), and
$$\begin{cases} N_1^{2r}P &= 2^{r-1}M^r + 1\\ N_2^{2r} &= 2^{r-1}M^r - 1 \end{cases}$$
 is impossible modulo 2^{r-1} in (??)). But:

- $2M_2^{2r} = N^r + 1$ in (??) can be written as $x^r 2y^r = -1$, which is impossible by "Rational approximation to algebraic numbers of small height: the Diophantine equation $|ax^n by^n| = 1$ " https://personal.math.ubc.ca/~bennett/B-Crelle2.pdf;
- $2^{2r-3}M_1^{2r} = N^r 1$ in (??) can be written as $x^r 2y^2 = 1$ for $y = 2^{r-2}M_1^r$, which is impossible by "A Note on Two Diophantine Equations" https://www.m-hikari.com/ams/ams-2012/ams-133-136-2012/taoAMS133-136-2012-2.pdf;
- From $N_2^{2r} = 2^{r-1}M^r + 1$ in (??), we get

$$\begin{cases} N_2^r \pm 1 &= 2^{r-2}M^r; \\ N_2^r \mp 1 &= 2M^r, \end{cases}$$

and the second line is impossible by "Rational approximation to algebraic numbers of small height: the Diophantine equation $|ax^n - by^n| = 1$ ".

In conclusion: Only (??) is nontrivial, and p must be of the form $p = 2^{2r-1}M^{2r} + 1$.