
The design of greedy number representations 

In the following we restrict ourselves for convenience to the design of greedy binary number 

representations of nonnegative numbers, however all definitions can easily be generalized to greedy 

number representations with other sets of digits. For naming we will follow the traditions in number 

representation so far as most as possible. Number representations like the factorial number 

representations are excluded because they need an infinite number of digits to represent all 

nonnegative numbers. The greedy number representations must satisfy the condition that each finite 

nonnegative number can be represented by a finite string of digits, so any infinite representation, like 

p-adic number representation is excluded. 

All we need is some basic algebraic structures like equivalence relations and partial ordering 

relations, as well as regular languages in formal language theory. Apart from the syntax, the 

(denotational) semantics of a number representation is important as well. 

Although we started this study as a challenge in combining basic mathematics and language theory, it 

could contribute to coding theory as well, as from the fact that from coding theory, a (denotational) 

meaning becomes important as well. As from language theory in general, we have to deal with a 

syntax level, a semantic level as well as a pragmatic level. All three levels will occur below in a special 

sence. 

The so called A-numbers in this paper refer to Neil Sloane’s On-line Encyclopedia of Integer 

Sequences [1]. 

History 

The tally representation of numbers can be considered to be the oldest greedy representation 

known, although it was not intended that way in the past. In fact, it becomes only a greedy 

representation if we use the symbol 0 for the empty string as we will see by an example below. The 

first modern greedy representation was published in 1951 by the Dutch mathematician Gerrit 

Lekkerkerken [2], however, in his paper he referred already to Dr E. Zeckendorf (most likely in some 

form of private communication), and as turned out later, Zeckendorfs first ideas go back to 1939. In 

1972 Edouard Zeckendorf published his contribution to the greedy number representations as well 

[3]. Lekkerkerker showed in his paper that for the greedy Zeckendorf representation of numbers, the 

arithmetic mean of the fraction of 1’s in the representation tends to ½ (1 – 1/5), i.e., the constant 

A244847. 

Definitions 

Basic statement: 

Any binary greedy representation G of nonnegative numbers is a subset of the set of binary fixed 

radix (base = 2) representations, i.e., G  L(0|1(0|1)*). 

Here, 0|1(0|1)* is the regular expression of the set of binary fixed radix representations. Note that 

the representation 0 for zero is an exception; the 0 notation replaces the empty string in traditional 

number representation as it will follow from the meaning function M below. 



Beside binary representations, which use the alphabet {0, 1}, we can easily extend the definitions to 

alphabets with higher cardinality, like the ternary alphabet {0, 1, 2} with regular expression 

0|(1|2)(0|1|2|)* for ternary fixed radix representations. 

Definition of meaning function and weights: 

In order to define a meaning of a (greedy) representation, we need an ordered set of weights Wi, 

such that the meaning of the number representation bn bn-1 … b1 b0  G, MW(b), is given by M(bn bn-1 

… b1 b0) = bn Wn + bn-1 Wn-1 + … + b1 W1 + b0 W0. The ordered set of weihts, (W0, W1, W2, …) will be 

denoted by W. 

For binary fixed radix representation we have W0 = 1 and Wi+1 = 2 Wi for i  0. We will denote this 

special set of weights by W2, it’s meaning is represented by A007088 in the sense that n is the 

meaning of A007088(n). For the well-known Zeckendorf representations, A014417 and A104326, we 

have W0 = 1, W1 = 2 and Wi+1 = Wi + Wi-1 for i  1. 

The main challenge in designing a (greedy) representation will be designing a suitable set of weights 

W to define a (greedy) representation. For this reason we mention Brown’s completeness criterion 

[4]: 

The sequence W of weights is considered complete if and only if W0 = 1, and Wn+1  1 + (b-1) 0kn 

Wk for n  0. 

Here b refers to “base”, i.e., for b=2 we are dealing with binary representations with alphabet {0, 1} 

and for b=3 we are dealing with ternary representations with alphabet {0, 1, 2}, and so on. 

In fact, Brown’s completes criterion is to strong; any finite permutation of a weight sequence W 

satisfying this criterion will satisfy also as we will see below. 

By definition, an ordered set of weights W satisfies if and only if for each nonnegative integer n, 

there exists a b  L(0|1(0|1)*) such that MW(b) = n. However, for any set of weights that is suitable 

for defining a greedy representation, there exists a pair b1 and b2 (b1, b2  L(0|1(0|1)*)) such that b1 

 b2 and MW(b1) = MW(b2). This later will be part of the definition for a representation to be greedy. 

I.e., in general a greedy representation will in general need substantial more (binary) digits than any 

non-greedy representation. 

Note that at syntax level, an alphabet is just a non-empty finite set of symbols. When the semantic 

meaning function becomes involved, the alphabet becomes an ordered set of symbols; i.e. for binary 

representation the ordered set (0, 1), with 1 > 0. 

Definition of interpretation function: 

Next we need an interpretation function IW (with respect to some meaning function MW), such that 

IW(n) gives the set of all b such that MW(b) = n, i.e., IW(n) = { b  L(0|1(0|1)* | MW(b) = n }. 

Definition of condensed representations: 



As for number representation in general, for all n, n  0, I(n)  , i.e., each n must have at least one 

representation in L(0|1(0|1)*). A representation is called condensed if for all n  0,  |IW(n)| = 1. This 

definition is only partial, as we will see from a pragmatic reason below given by a counterexample. 

An example of a condensed representation is given by W = (2, 1, 4, 8, …). Of course any finite 

permutation of the set of powers of 2 will lead to a condensed representation. Note that the 

condition finite in finite permutation is essential. 

Example 1. 

Suppose we have an infinite permutation given by W is the concatenation () of all even powers of 2 

and all odd powers of 2, i.e. W = (22n | n = 0, 1, 2, …)  (22n+1 | n = 0, 1, 2, …), representing the finite 

number 2 would lead to an infinite long strings for some finite numbers, which is in contradiction 

with a restriction we gave before. 

The above example represents a pragmatic restriction; finite permutations are allowed, but infinite 

permutations are excluded! 

Any condensed representation as defined above including the pragmatic restriction, can be used as a 

reference for defining a greedy representation, including its denotational meaning, as we will see 

below. 

Definition of the weight product PW: 

The number of different representations with respect to some meaning function MW and its weight 

function W is given by the product PW = n  0 | IW(n) |. 

As mentioned already, in case PW = 0, there exists a number n with no representation, so W is not 

suitable, and in case PW = 1 we are dealing with a condensed representation if some pragmatic 

conditions are satisfied. If PW = , W is suitable for defining a greedy representation. This leads us to 

considerate the possibility that PW satisfies 1 < PW < . Although we consider these possibilities as 

less interesting, we propose to name representations based on a weight W satisfying this condition 

as stretched representations. 

Definition of stretched representations: 

For any stretched representation, the weight function W results in a weight product PW, satisfying 1 < 

PW < . 

In fact, we are dealing with an equivalence relation , by b1  b2 ::= MW(b1) = MW(b2). Each class can 

be represented either by its meaning n, or by a representing vector b such that MW(b) = n. Once we 

have defined a representing vector b, this vector will be denoted by r. More specific, r(n) will be the 

representing vector of the class IW(n), such that r(n) is a unique representation. 

Definition of partial ordering relation 2: 

Next we need is a partial ordering relation, 2. Let R1 and R2 be two (binary) representations with 

respect to some weight W, R1 2 R2 is defined as, for all r1 R1 and r2 R2, M2(r1)  M2(r2). The result 

is that there exists a lattice with respect to some weight W. In many cases we have a bounded lattice 



with a maximal and a minimal (top and bottom, or upper and lower bound) element, represented by 

RT and R respectively. 

Here, we need some more comments. First of all, the set of all representations (greedy, stretched as 

well as condensed), will lead to some (unbounded) lattice. However, for each weight sequence W, 

we have a sub lattice, which has in general a top and a bottom element. A necessary condition here 

is that for all n, | Iw(n) | is finite, otherwise, the top element will not exist. A counterexample which is 

unbounded will be given below. 

We decided to call the representations that are greedy and are either top or bottom representations 

greedy top and greedy bottom representations. This could be confusing with respect to the 

traditional naming of minimal and maximal Zeckendorf representations [5] in the sense that the 

minimal Zeckendorf representation is an example of a greedy top representation, and the maximal 

Zeckendorf representation is an example of a greedy bottom representation. The naming of 

minimum and maximum Zeckendorf representations where based however on the number of 1’s in 

the representation, and not on the ordering relation 2 proposed here. 

The choice for the meaning function M2 in the definition for the partial ordering relation seems to be 

an obvious one, but, on the other hand, any meaning function of a condensed representation could 

have been used as well. 

If r(n) is the representation of n in a greedy top representation RT, M2(r(n)) is the maximum value of 

{M2(r) | r  I(n)}. If r(n) is the representation of n in a greedy bottom representation R, M2(r(n)) is 

the minimum value of {M2(r) | r  I(n)}. 

If RT and R both exist, any representation R has a complimentary representation Rc, in particular RT
c 

= R. Moreover, if R is a condensed representation, R = Rc = RT = R. 

Conjecture 1. 

With respect to some weights W, based on some linear recurrence relation, the greedy top and 

greedy bottom representation, if they exist, will always be a regular language. 

For binary greedy representations, the weights W based on some linear recurrence relation must of 

course satisfy the condition Lim i   Wi+1/Wi  2. Further, there must exist a k such that Wk = 1. These 

conditions are necessary to assure that IW(n)   for all n  0. However, W = (1, 2, 3, 5, …) as applied 

Fibonacci numbers for the Zeckendorf representations, gives a minimal set from the Fibonacci 

sequence, but W = (1, 1, 2, 3, 5, …) or W = (0, 1, 1, 2, 3, 5, …) will satisfy as well for the design of 

binary greedy representations with the definitions given here. 

In the above conjecture, if we replace M2 in the definition of the partial ordering relation by the 

meaning function of some other condensed representation, the conjecture is believed to be hold as 

well. 

Example 2. 

Let W be given by the all 1’s sequence A000012. The greedy representations formed by this W leads 

to a lattice with only a lower bound. This lower bound is given by A002275, i.e., the tally 

representation where 0 represents the empty string. The regular language is given by 0|11*. 



Conjecture 2. 

If with respect to some weights W, the greedy top and/or greedy bottom representations exists, the 

set of palindromic representations is a context free language. 

The table below shows the most important sequences in the OEIS [1] related to condensed and 

greedy number representations. 

 

W [a] | IW(n) | MW(A007088) R RT comment 

A000012[0:] 1,,, …  A002275 dne [b] Tally 

A000079[0:] A000012  A007088 A007088 binary condensed 

A000045[2:] A000119 A022290 A104326 A014417 Zeckendorf 

A000930[2:]  A350311 A350312 A350215 Based on Narayana’s cows sequence 

A001045[1:] A026465    Based on Jacobsthal numbers 

A000244[0:] A000012 - [c] A007089 A007089 ternary condensed 

A007598[1:] A147561 - [c]   squared Fibonacci [5] 

A000302[0:] A000012 - [c] A007090 A007090 quaternary condensed 

A000331[0:] A000012 - [c] A007091 A007091 quinary condensed 

A056570[1:] A147561 - [c]   cubed Fibonacci [5] 

Table 1. 

Notes: 

[a] The weights sequence is given by the OEIS A number, where the suffix [n:] means that the 

sequence starts at index n. 

[b] dne stands for “does not exist”. 

[c] This cell is not relevant here, because the sequence A007088 refers only to binary 

representations. 
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