The distribution of the distance from the first weak subcedance to 1 on permutations

David Callan

December 17, 2021

Abstract

This note finds the explicit distribution of the statistic "distance from the first weak subcedance to 1" on permutations of [n], sequence A350158 in OEIS.

A subcedance in a permutation is an entry that is less than its position: for a permutation $\pi = \pi_1 \dots \pi_n$ of [n], we say π_i is a subcedance if $\pi_i < i$, and a weak subcedance if $\pi_i \leq i$. The entry 1 is a weak subcedance no matter what its position, and so the first subcedance in a permutation of [n] always occurs weakly to the left of 1. We define the statistic X on S_n , the set of all permutations of [n], to be the difference between the position of 1 and the position of the first weak subcedance. Thus, for $\pi = 132$, X = 0while for $\pi = 3214$, X = 1 and for $\pi = 246351$, X = 2. For $n \geq 1$ and $k \geq 0$, set $\mathcal{A}_{n,k} = \{\pi \in S_n : X = k\}$ and let $a_{n,k} = |\mathcal{A}_{n,k}|$. The first few values of $a_{n,k}$ are

Short table of values of $a_{n,k}$, sequence A350158.

Our objective is to compute $a_{n,k}$.

Suppose first that $k \ge 1$ (and $n \ge 2$). Then, for $\pi \in \mathcal{A}_{n,k}$, the position j of the first weak subcedance satisfies $j \le n - k$ because 1 is in position j + k. So "delete 1 and subtract 1 from all remaining entries" is obviously a bijection from $\mathcal{A}_{n,k}$ to the set of permutations of [n-1] for which the first (strong) subcedance occurs at or before position n-k. The complement of this set in \mathcal{S}_{n-1} consists of those permutations for which none of the first n-k entries are subcedances, that is, all are weak excedances, easily seen to be counted by $k^{n-k}(k-1)!$. Hence, for $n \ge 2$ and $1 \le k \le n-1$,

$$a_{n,k} = (n-1)! - k^{n-k}(k-1)!$$

Note that $a_{n,n-1} = 0$ for $n \ge 2$. A routine calculation now yields that, for $n \ge 2$,

$$a_{n,0} = n! - \sum_{k=1}^{n-2} a_{n,k} = 2(n-1)! + \sum_{k=1}^{n-2} k^{n-k}(k-1)!,$$

and the summands in the last expression in fact count $\mathcal{A}_{n,0}$ by the position of 1.

Department of Statistics, University of Wisconsin-Madison