Formula for A349593

OEIS A349593: Square array read by downward diagonals: for $n \geq 0, k \geq 1, T(n, k)$ is the period of $\binom{N}{n} \mod k : N \in \mathbb{Z}$.

Theorem. Given $n \ge 0, k \ge 1$, let T(n, k) be the period of $\{\binom{N}{n} \mod k : N \in \mathbb{Z}\}$. Then we have:

- (i) If n > 0, then $T(n, k) = k \prod_{\text{prime } p \mid k} p^{\lceil \log_p(n) \rceil}$, where $[\cdot]$ is the floor function;
- (ii) Let $Q(N) = \begin{cases} 1, & k | {N \choose n} \\ 0, & k | {N \choose n} \end{cases}$, then T(n, k) is also the period of $\{Q(N) : N \in \mathbb{Z}\}$.

Proof. In the proof we would introduce the following notations:

- T'(n,k) is the period of $\{Q(N): N \in \mathbb{Z}\};$
- $s(p) = 1 + [\log_n(n)]$ is the number of digits of n in base p;
- c(N, p) is the number of carries when adding N n and n in base p.

Write $k = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$, then it is clear that $T(n,k) = \text{lcm}(T(n,p_1^{e_1}),T(n,p_2^{e_2}),\cdots,T(n,p_r^{e_r}))$, and that T'(n,k)|T(n,k). We will complete the proof by proving these two statements: (a) $T(n,p^e) \leq p^{s(p)+e-1}$; (b) $T'(n,k) \geq \prod_{i=1}^r p_i^{s(p_i)+e_i-1}$. Using the following Lemma, we only need to consider the case $N \geq n$.

Lemma. Let T(n,k) and T'(n,k) be the periods of $\binom{N}{n} \mod k : N \ge n$, $\{Q(N) : N \ge n\}$ respectively. Then T(n,k) and T'(n,k) are also periods of $\binom{N}{n} \mod k : N \in \mathbb{Z}$, $\{Q(N) : N \in \mathbb{Z}\}$ respectively.

Proof. For $N \in \mathbb{Z}$, let r(N) be the number in [n, n+T(n,k)) that is congruent to N modulo T(n,k). It suffices to show $\binom{N}{n} \equiv \binom{r(N)}{n} \pmod{k}$ holds for all $N \in \mathbb{Z}$. Note that for $N \in \mathbb{Z}$, we have

$$\binom{N+k\cdot n!}{n}=\frac{(N+k\cdot n!)(N+k\cdot n!-1)\cdots(N+k\cdot n!-n+1)}{n!}\equiv\frac{N(N-1)\cdots(N-n+1)}{n!}=\binom{N}{n}(\text{mod }k).$$

For $N \in \mathbb{Z}$, choose a sufficiently large t such that $N + t \cdot T(n,k) \cdot n! \geq n$, then

$$\binom{N}{n} \equiv \binom{N+t \cdot T(n,k) \cdot n!}{n} \equiv \binom{r(N+t \cdot T(n,k) \cdot n!)}{n} = \binom{r(N)}{n} \pmod{k}.$$

Proof of (a): by Theorem 1 of the Andrew Granville's link, for $N \geq n$, we have

$$\binom{N}{n}/p^{c(N,p)} \equiv \binom{N+p^{s(p)+e-1}}{n}/p^{c(N+p^{s(p)+e-1},p)} \pmod{p^e},$$

so it suffices to show $\min\{c(N,p),e\} = \min\{c(N+p^{s(p)+e-1},p),e\}$. Consider the case where $c(N,p) \neq c(N+p^{s(p)+e-1},p)$, this means that there is a carry when adding N-n and n or adding $N+p^{s(p)+e-1}-n$ and n (in base p) beyond or on the (s(p)+e-1)-th digit. Suppose that there is a carry when adding N-n and n beyond or on the (s(p)+e-1)-th digit, since n only has s(p) digits, there are carries on the $s(p)-1,s(p),\cdots,(s(p)+e-2)$ -th digits when adding N-n and n. Since N-n and $N+p^{s(p)+e-1}-n$

have the same last s(p)+e-1 digits, there are carries on the $s(p)-1, s(p), \cdots, (s(p)+e-2)$ —th digits when adding $N+p^{s(p)+e-1}-n$ and n, hence $c(N,p), c(N+p^{s(p)+e-1},p) \geq e$. The same follows if there is a carry when adding $N+p^{s(p)+e-1}-n$ and n beyond or on the (s(p)+e-1)—th digit. In conclusion, $p^{s(p)+e-1}$ is a period of $\left\{\binom{N}{n} \bmod k : N \geq n\right\}$.

Proof of (b): Let $P = \prod_{i=1}^r p_i^{s(p_i) + e_i - 1}$, by (a) we have T'(n, k)|P. Fixed i, we will show that P/p_i is not a period of $\{Q(N): N \ge n\}$. For each p_j , consider the base $-p_j$ expansion of n: $n = n_j p_j^{s(p_j) - 1} + \cdots$, $n_j \ne 0$. Let $N \ge n$ satisfy the congruence

$$N - n \equiv (p_j - n_j)p_j^{s(p_j) - 1} + (p - 1)p_j^{s(p_j)} + \dots + (p - 1)p_j^{s(p_j) + e_j - 2} \pmod{p_j^{s(p_j) + e_j - 1}},$$

then there are at least e_j carries when adding N-n and n in base p_j ; by Kummer's theorem, $k|\binom{N}{n}$. Let $r \geq 0$ satisfy the congruence

$$\begin{cases} r \equiv 0 \pmod{p_j^{s(p_j) + e_j - 1}}, j \neq i; \\ r \equiv -p_i^{s(p_i) + e_i - 2} \pmod{p_i^{s(p_i) + e_i - 1}}, \end{cases}$$

then

$$N + r - n \equiv \begin{cases} (p_i - n_i)p_i^{s(p_i) - 1} + (p - 1)p_i^{s(p_i)} + \dots + (p - 1)p_i^{s(p_i) + e_i - 3} + (p - 2)p_i^{s(p_i) + e_i - 2}, e_i > 1\\ (p_i - n_i - 1)p_i^{s(p_i) - 1}, e_i = 1 \end{cases}$$

$$(\text{mod } p_i^{s(p_i) + e_i - 1}),$$

there are only $e_i - 1$ carries when adding N + r - n and n in base p_i , hence $k \mid / \binom{N+r}{n}$. Note that $P/p_i \mid r$, so P/p_i is not a period of $\{Q(N) : N \ge n\}$.