%I #14 Aug 28 2022 21:12:28
%S 20576473996736735,42380075646230399,75943207554554879,
%T 83668951228080959,96195222056687039,116436396482735615,
%U 132525862783734959,134052021887096159,162544912900261199,175900784368936319,186326804496197519,190523141606006495,196467189590024639
%N Lucas-Carmichael numbers with 11 prime factors.
%H Daniel Suteu, <a href="/A349030/b349030.txt">Table of n, a(n) for n = 1..2124</a> (all terms < 2^64).
%e 20576473996736735 = 5*7*11*17*23*31*47*53*71*107*233 and 6, 8, 12, 18, 24, 32, 48, 54, 72, 108, and 234 all divide 20576473996736736.
%o (PARI) is(n)={omega(n)==11&&is_A006972(n)}
%Y Intersection of A006972 and A069272.
%Y Cf. A216928 (least Lucas-Carmichael number with n prime factors).
%Y Cf. A216925, A216926, A216927, A217002, A217003, A217091, A349028, A349029 (Lucas-Carmichael numbers with 3-10 prime factors).
%K nonn
%O 1,1
%A _Tim Johannes Ohrtmann_, Nov 06 2021