login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348539
Triangle T(n, m) = binomial(n+2, m)*binomial(n+2, n-m), read by rows.
0
1, 3, 3, 6, 16, 6, 10, 50, 50, 10, 15, 120, 225, 120, 15, 21, 245, 735, 735, 245, 21, 28, 448, 1960, 3136, 1960, 448, 28, 36, 756, 4536, 10584, 10584, 4536, 756, 36, 45, 1200, 9450, 30240, 44100, 30240, 9450, 1200, 45, 55, 1815, 18150, 76230, 152460, 152460, 76230, 18150, 1815, 55
OFFSET
0,2
FORMULA
G.f.: (x^2*y^2 - 2*x*y + x^2 - 2*x + 1)/(2*x^4*y^2*sqrt(x^2*y^2 + (-2*x^2-2*x)*y + x^2 - 2*x + 1)) + (x*y + x - 1)/(2*x^4*y^2).
G.f.: diff(N(x,y),x)*N(x,y)/(x*y^2), where N(x,y) is the g.f. of the Narayana numbers A001263.
EXAMPLE
Triangle starts:
[0] 1;
[1] 3, 3;
[2] 6, 16, 6;
[3] 10, 50, 50, 10;
[4] 15, 120, 225, 120, 15;
[5] 21, 245, 735, 735, 245, 21;
[6] 28, 448, 1960, 3136, 1960, 448, 28.
.
Taylor series:
1 + 3*x*(y + 1) + 2*x^2*(3*y^2 + 8*y + 3) + 10*x^3*(y^3 + 5*y^2 + 5*y + 1) + 15*x^4 (y^4 + 8*y^3 + 15*y^2 + 8*y + 1) + O(x^5)
MAPLE
T := (n, k) -> binomial(n+2, k) * binomial(n+2, n-k):
for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Oct 22 2021
MATHEMATICA
T[n_, m_] := Binomial[n + 2, m] * Binomial[n + 2, n - m]; Table[T[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Amiram Eldar, Oct 22 2021 *)
PROG
(Maxima) T(n, m):=binomial(n+2, m)*binomial(n+2, n-m);
CROSSREFS
Cf. A001263, A000217, A002694 (with offset 0 are row sums).
Sequence in context: A006807 A298180 A119460 * A095356 A123104 A038076
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Oct 21 2021
STATUS
approved