%I #20 Oct 21 2021 08:55:06
%S 1,0,-1,-3,-10,-45,-271,-2058,-18775,-199335,-2410516,-32683563,
%T -490870315,-8087188200,-144994236661,-2810079139143,-58536519252130,
%U -1304198088413265,-30946462816602331,-779104979758256298,-20742005411397108595,-582214473250983046155,-17184302765073000634276
%N Expansion of e.g.f. sqrt(exp(x)*(2-exp(x))).
%H Seiichi Manyama, <a href="/A348468/b348468.txt">Table of n, a(n) for n = 0..425</a>
%H Feng Qi and Mark Daniel Ward, <a href="https://arxiv.org/abs/2110.08576">Closed-form formulas and properties of coefficients in Maclaurin's series expansion of Wilf's function</a>, arXiv:2110.08576 [math.CO], 2021.
%F a(n) ~ -sqrt(2) * n^(n-1) / (log(2)^(n - 1/2) * exp(n)). - _Vaclav Kotesovec_, Oct 21 2021
%t m = 22; Range[0, m]! * CoefficientList[Series[Sqrt[Exp[x]*(2 - Exp[x])], {x, 0, m}], x] (* _Amiram Eldar_, Oct 19 2021 *)
%o (PARI) my(x='x+O('x^25)); Vec(serlaplace(sqrt(exp(x)*(2-exp(x)))))
%Y Cf. A000629, A000918, A014304, A014307, A260701, A260902.
%K sign
%O 0,4
%A _Michel Marcus_, Oct 19 2021