%I #52 Jul 27 2023 17:30:21
%S 0,0,22,336,1422,3952,8790,16992,29806,48672,75222,111280,158862,
%T 220176,297622,393792,511470,653632,823446,1024272,1259662,1533360,
%U 1849302,2211616,2624622,3092832,3620950,4213872,4876686,5614672,6433302,7338240,8335342,9430656
%N Number of ways two L-tiles (with rotation) can be placed on an n X n square.
%C All terms are even, because groups of ways, which are connected by 90 degrees rotation symmetry, are made up from 4 or 2 ways, so the number of ways will be some 4m+2n, and 4m+2n is even.
%H Nicolas Bělohoubek, <a href="/A348134/a348134.pdf">Visualization of 3rd term</a>
%H Nicolas Bělohoubek, <a href="/A348134/a348134_1.pdf">90° rotation groups for 3rd term</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F a(n) = 2*(n - 2)*(4*n^3 - 8*n^2 - 19*n + 32) for n > 1.
%F G.f.: 2*x^3*(11 + 113*x - 19*x^2 - 9*x^3)/(1 - x)^5. - _Stefano Spezia_, Oct 03 2021
%e For a(1) and a(2) there are fewer squares on the main square then squares of the 2 L-tiles, so a(1) = a(2) = 0.
%t LinearRecurrence[{5,-10,10,-5,1},{0,0,22,336,1422,3952},40] (* _Harvey P. Dale_, Mar 04 2023 *)
%Y Cf. A242856, A243645.
%K nonn,easy
%O 1,3
%A _Nicolas Bělohoubek_, Oct 02 2021