%I #11 Sep 30 2021 17:23:52
%S 56347,906596,906597,1090250,1141550,1243275,4972372,5684822,6288488,
%T 6379748,6486325,6907974,7480447,8587249,9129248,11112173,12133672,
%U 12133673,13852924,14185448,17519948,19293208,19293209,19751750,20738672,21560848,21721796,21959350
%N Starts of runs of 4 consecutive numbers that have an equal number of unitary and nonunitary prime divisors (A348097).
%H Amiram Eldar, <a href="/A348100/b348100.txt">Table of n, a(n) for n = 1..10000</a>
%e 56347 is a term since 56347 = 29^2 * 67, 56347 + 1 = 56348 = 2^2 * 14087, 56347 + 2 = 56349 = 3^3 * 2087 and 56347 + 3 = 56350 = 2 * 5^2 * 7^2 * 23 all have the same number of unitary and nonunitary prime divisors.
%t q[n_] := n == 1 || Count[(e = FactorInteger[n][[;; , 2]]), 1] == Length[e]/2; v = q /@ Range[4]; seq = {}; Do[v = Append[Drop[v, 1], q[k]]; If[And @@ v, AppendTo[seq, k - 3]], {k, 5, 1.3*10^6}]; seq
%Y Subsequence of A348097, A348098 and A348099.
%Y Cf. A335398.
%K nonn
%O 1,1
%A _Amiram Eldar_, Sep 30 2021