The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A347937 Numbers k such that k and k+1 are both terms of A347935. 1

%I #18 Sep 26 2021 13:21:05

%S 2282175,16769024,18356624,27252224,32493824,35820224,46577024,

%T 50968575,51962624,53992575,55130624,61854975,63101024,63140175,

%U 69980624,72525375,73378304,74376224,80791424,82389824,98834175,102650624,105674624,107769375,109001024,110238975

%N Numbers k such that k and k+1 are both terms of A347935.

%H David A. Corneth, <a href="/A347937/b347937.txt">Table of n, a(n) for n = 1..2372</a> (first 103 terms from Amiram Eldar)

%e 2282175 is a term since A187795(2282175) = 4801650 > 2*2282175 = 4564350 and A187795(2282176) = 4630080 > 2*2282176 = 4564352.

%t abQ[n_] := DivisorSigma[1, n] > 2*n; s[n_] := DivisorSum[n, # &, abQ[#] &]; q[n_] := s[n] > 2*n; seq = {}; q1 = q[1]; Do[q2 = q[n]; If[q1 && q2, AppendTo[seq, n-1]]; q1 = q2, {n, 2, 2*10^7}]; seq

%o (PARI) isok1(k) = sumdiv(k, d, if (sigma(d)>2*d, d)) > 2*k; \\ A347935

%o isok(k) = isok1(k) && isok1(k+1); \\ _Michel Marcus_, Sep 20 2021

%Y Subsequence of A005101, A096399 and A347935.

%Y Cf. A187795, A347936, A347939.

%K nonn

%O 1,1

%A _Amiram Eldar_, Sep 20 2021

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 10:07 EDT 2024. Contains 373329 sequences. (Running on oeis4.)