Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Jan 25 2022 21:01:43
%S 2,3,5,6,5,24,5,71,5,194,5,516,5,1359,5,3566,5,9344,5,24471,5,64074,5,
%T 167756,5,439199,5,1149846,5,3010344,5,7881191,5,20633234,5,54018516,
%U 5,141422319,5,370248446,5,969323024,5,2537720631,5,6643838874,5,17393795996,5,45537549119,5,119218851366,5
%N a(n) = A000032(n)*A000032(n+1) mod A000032(n+2).
%C The analogous sequence for Fibonacci numbers instead of Lucas numbers is A333599.
%H Robert Israel, <a href="/A347861/b347861.txt">Table of n, a(n) for n = 0..4760</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (-1,3,3,-1,-1).
%F G.f.: 4*x - 3 - (x + 3)/(2*(x^2 + x - 1)) - (x - 3)/(2*(x^2 - x - 1)) + 5/(x + 1).
%F a(n) = -a(n-1) + 3*a(n-2) + 3*a(n-3) - a(n-4) - a(n-5) for n >= 7.
%F a(n) = 5 for even n >= 2.
%F a(n) = A000032(n+2)-5 for odd n >= 3.
%e a(3) = A000032(3)*A000032(4) mod A000032(5) = 4*7 mod 11 = 6.
%p L:= n -> combinat:-fibonacci(n-1)+combinat:-fibonacci(n+1):
%p f:= n -> L(n)*L(n+1) mod L(n+2):
%p map(f, [$0..40]);
%t With[{L = LucasL}, Table[Mod[L[n]*L[n + 1], L[n + 2]], {n, 0, 50}]] (* _Amiram Eldar_, Jan 24 2022 *)
%o (PARI) L(n) = fibonacci(n+1)+fibonacci(n-1);
%o a(n) = L(n)*L(n+1) % L(n+2); \\ _Michel Marcus_, Jan 24 2022
%Y Cf. A000032, A333599.
%K nonn,easy
%O 0,1
%A _J. M. Bergot_ and _Robert Israel_, Jan 23 2022