Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Sep 09 2021 10:46:19
%S 1,1,3,52,8925,22661496,1131162092095,1375009641495014400,
%T 48378633136349277767794425,57001313848230245122464621625840000,
%U 2552524038347870310755413660544832496799359491,4859161865915056755501262525796512204608930674134393036800
%N a(n) is the n-th n-factorial number: a(n) = n!_n.
%H Alois P. Heinz, <a href="/A347611/b347611.txt">Table of n, a(n) for n = 0..36</a>
%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>
%F a(n) = Product_{j=1..n} (n^j-1)/(n-1) for n > 1, a(0) = a(1) = 1.
%F a(n) = A069777(n,n).
%p b:= proc(n, k) option remember; `if`(n<2, 1,
%p b(n-1, k)*(k^n-1)/(k-1))
%p end:
%p a:= n-> b(n$2):
%p seq(a(n), n=0..12);
%t Array[QFactorial[#, #] &, 12, 0] (* _Michael De Vlieger_, Sep 09 2021 *)
%o (PARI) a(n) = if (n<=1, 1, prod(k=1, n, (n^k-1)/(n-1))); \\ _Michel Marcus_, Sep 09 2021
%o (Python)
%o from math import prod
%o def a(n):
%o return 1 if n <= 1 else prod((n**k - 1)//(n - 1) for k in range(1, n+1))
%o print([a(n) for n in range(12)]) # _Michael S. Branicky_, Sep 09 2021
%Y Main diagonal of A069777.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Sep 08 2021