login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


E.g.f.: exp( (x * exp(x) + sinh(x)) / 2 ).
2

%I #5 Aug 01 2021 16:40:04

%S 1,1,2,6,20,79,357,1783,9788,58361,374581,2571851,18779928,145163975,

%T 1183028095,10129297307,90843458256,851083079649,8309588493841,

%U 84370700833147,889152061199144,9709123938880103,109677977422359703,1279880472867083111,15408386793144717536

%N E.g.f.: exp( (x * exp(x) + sinh(x)) / 2 ).

%C Exponential transform of A110654.

%F a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A110654(k) * a(n-k).

%t nmax = 24; CoefficientList[Series[Exp[(x Exp[x] + Sinh[x])/2], {x, 0, nmax}], x] Range[0, nmax]!

%t a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Ceiling[k/2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]

%Y Cf. A000248, A003724, A110654, A346746, A346748.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Aug 01 2021

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 15:43 EDT 2024. Contains 376073 sequences. (Running on oeis4.)