%I #19 Oct 02 2021 08:05:10
%S 1062489753,1256984730,1520843976,1952843760,1957346028,2367098415,
%T 2718609453,2735891406,2764518903,2854316790,3026847915,3574816290,
%U 3694517820,3807459216,3842970615,4039521786,4075916328,4076819253,4216879530,4523098716,4703869521
%N Hexagonal pandigitals.
%F Intersection of A000384 (hexagonal numbers) and A171102 (infinite pandigital numbers).
%t h[n_] := n*(2*n - 1); Select[h /@ Range[50000], Length @ DeleteDuplicates @ IntegerDigits[#] == 10 &] (* _Amiram Eldar_, Aug 19 2021 *)
%o (Sage)
%o A000384 = list(int(n*(2*n-1)) for n in range(0,1000000))
%o def haspan(s): return any(len(set(s[i:i+10]))==10 for i in range(len(s)-9))
%o A346652 = list(elem for elem in A000384 if haspan(str(elem)))
%Y Cf. A000384, A171102.
%K nonn,base,less
%O 1,1
%A _Dumitru Damian_, Aug 19 2021