login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positive integers k that are the product of two integers greater than 1 and ending with 1.
5

%I #23 Sep 11 2021 16:06:44

%S 121,231,341,441,451,561,651,671,781,861,891,961,1001,1071,1111,1221,

%T 1271,1281,1331,1441,1491,1551,1581,1661,1681,1701,1771,1881,1891,

%U 1911,1991,2091,2101,2121,2201,2211,2321,2331,2431,2501,2511,2541,2601,2651,2751,2761

%N Positive integers k that are the product of two integers greater than 1 and ending with 1.

%C All the terms end with 1 (A017281).

%H Stefano Spezia, <a href="/A346507/b346507.txt">Table of n, a(n) for n = 1..10000</a>

%F Conjecture: lim_{n->infinity} a(n)/a(n-1) = 1.

%F The conjecture is true since it can be proved that a(n) = (sqrt(a(n-1)) + g(n-1))^2 where [g(n): n > 1] is a bounded sequence of positive real numbers. - _Stefano Spezia_, Aug 21 2021

%e 121 = 11*11, 231 = 11*21, 341 = 11*31, 441 = 21*21, 451 = 11*41, ...

%t a={}; For[n=1, n<=300, n++, For[k=1, k<n, k++, If[Mod[10n+1, 10k+1]==0 && Mod[(10n+1)/(10k+1), 10]==1 && 10n+1>Max[a], AppendTo[a, 10n+1]]]]; a

%o (Python)

%o def aupto(lim): return sorted(set(a*b for a in range(11, lim//11+1, 10) for b in range(a, lim//a+1, 10)))

%o print(aupto(2761)) # _Michael S. Branicky_, Jul 22 2021

%o (PARI) isok(k) = fordiv(k, d, if ((d>1) && (d<k) && ((d%10)==1) && (((k/d) % 10) == 1), return (1))); \\ _Michel Marcus_, Jul 28 2021

%Y Cf. A017281 (supersequence), A053742 (ending with 5), A324297 (ending with 6), A346508, A346509, A346510.

%K nonn,base

%O 1,1

%A _Stefano Spezia_, Jul 21 2021