%I #21 Aug 04 2021 16:41:50
%S 1,1,4,21,149,1317,13985,173207,2451807,39043963,690844441,
%T 13446183857,285500221447,6567135007015,162678487750465,
%U 4317650962178897,122234460353464081,3676789159574231397,117102826395968235853,3936834192059910096205,139316727760914366716635
%N E.g.f.: 1 / (1 - x - Sum_{k>=2} prime(k-1) * x^k / k!).
%F a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * A008578(k) * a(n-k).
%t nmax = 20; CoefficientList[Series[1/(1 - x - Sum[Prime[k - 1] x^k/k!, {k, 2, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
%Y Cf. A000040, A008578, A030017, A300632, A300662, A302194, A346791.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Aug 04 2021