login
a(n) = smallest m such that for every red-blue edge-coloring of the graph K_{m,m} there exists either a red 4-cycle or a blue K_{1,n}.
0

%I #11 Jul 01 2021 15:26:19

%S 2,4,5,6,8,9,10,11,12,14,15,16,17,18,19,20,22,22,24,25,26,27,28,29,30,

%T 32,32

%N a(n) = smallest m such that for every red-blue edge-coloring of the graph K_{m,m} there exists either a red 4-cycle or a blue K_{1,n}.

%D Hatala, Imre, Tamás Héger, and Sam Mattheus. "New values for the bipartite Ramsey number of the four-cycle versus stars." Discrete Mathematics 344.5 (2021): 112320. Page 13 gives the known values for n <= 240.

%H <a href="/index/Ra#Ramsey numbers">Index entries for sequences related to Ramsey numbers</a>

%K nonn,more

%O 1,1

%A _N. J. A. Sloane_, Jun 30 2021