Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Mar 17 2024 07:45:31
%S 1,1,11,195,5033,171465,7264499,368258891,21740278417,1465044247953,
%T 110975742044635,9334724676616339,863320991981279033,
%U 87072657503374176985,9511213780859395685955,1118615909510940858978075,140933163945864346869845025,18937018020284359019138011425
%N Number of permutations of [2n] having n cycles of the form (c1, c2, ..., c_m) where c1 = min_{i>=1} c_i and c_j = min_{i>=j} c_i or c_j = max_{i>=j} c_i.
%H Alois P. Heinz, <a href="/A345342/b345342.txt">Table of n, a(n) for n = 0..332</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a>
%F a(n) = A344855(2n,n).
%F a(n) ~ c * (1 + exp(2))^n * (n-1)!, where c = sqrt((exp(2) + 1)/(exp(2) - 1))/(2*Pi) = 0.1823720711148962856100934464088354177502714116352616187167... - _Vaclav Kotesovec_, Jul 15 2021, updated Mar 17 2024
%F a(0) = 1; a(n) = Sum_{k=0..n} binomial(2*n, n + k + 1)*Stirling2(n + k + 1, k + 1). - _Detlef Meya_, Jan 18 2024
%p b:= proc(n) option remember; `if`(n=0, 1, add(expand(x*
%p b(n-j)*binomial(n-1, j-1)*ceil(2^(j-2))), j=1..n))
%p end:
%p a:= n-> coeff(b(2*n), x, n):
%p seq(a(n), n=0..18);
%t b[n_] := b[n] = If[n == 0, 1, Sum[Expand[x b[n-j] Binomial[n-1, j-1]* Ceiling[2^(j-2)]], {j, n}]];
%t a[n_] := Coefficient[b[2n], x, n];
%t Table[a[n], {n, 0, 18}] (* _Jean-François Alcover_, Aug 25 2021, after _Alois P. Heinz_ *)
%t a[0] := 1; a[n_] := Sum[Binomial[2*n, n + k + 1]*StirlingS2[n + k + 1, k + 1], {k, 0, n}]; Flatten[Table[a[n] , {n, 0, 17}]] (* _Detlef Meya_, Jan 18 2024 *)
%Y Cf. A344855.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Jun 14 2021