Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Oct 29 2024 12:55:08
%S 1,0,1,0,0,2,2,0,0,4,6,8,0,0,10,24,30,40,0,0,26,160,144,180,160,0,0,
%T 76,1140,1120,1008,840,700,0,0,232,8988,9120,8960,5376,4200,2912,0,0,
%U 764,80864,80892,82080,53760,30240,19656,12768,0,0,2620,809856,808640,808920,547200,336000,157248,95760,55680,0,0,9496
%N Triangle read by rows: T(n,k) is the number of permutations of length n that have k same elements at the same positions with its inverse permutation for 0 <= k <= n.
%H Alois P. Heinz, <a href="/A344901/b344901.txt">Rows n = 0..140, flattened</a>
%F T(n,k) = binomial(n,k)*A000085(k)*A038205(n-k).
%F From _Alois P. Heinz_, Oct 28 2024: (Start)
%F Sum_{k=0..n} k * T(n,k) = A052849(n) = A098558(n) for n>=2.
%F Sum_{k=0..n} (n-k) * T(n,k) = A052571(n).
%F Sum_{k=0..n} (-1)^k * T(n,k) = A000023(n).
%F T(n,0) + T(n,1) = A137482(n). (End)
%e Triangle T(n,k) begins:
%e 1;
%e 0, 1;
%e 0, 0, 2;
%e 2, 0, 0, 4;
%e 6, 8, 0, 0, 10;
%e 24, 30, 40, 0, 0, 26;
%e 160, 144, 180, 160, 0, 0, 76;
%e 1140, 1120, 1008, 840, 700, 0, 0, 232;
%e 8988, 9120, 8960, 5376, 4200, 2912, 0, 0, 764;
%e ...
%p b:= proc(n, t) option remember; `if`(n=0, 1, add(b(n-j, t)*
%p binomial(n-1, j-1)*(j-1)!, j=`if`(t=1, 1..min(2, n), 3..n)))
%p end:
%p T:= (n, k)-> binomial(n, k)*b(k, 1)*b(n-k, 0):
%p seq(seq(T(n, k), k=0..n), n=0..10); # _Alois P. Heinz_, Oct 28 2024
%Y Columns k=0-1 give: A038205, A221145.
%Y Row sums give A000142.
%Y Main diagonal gives A000085.
%Y Cf. A000023, A007318, A052571, A052849, A098558, A137482.
%K nonn,tabl
%O 0,6
%A _Mikhail Kurkov_, Jun 01 2021