

A344281


Integers m for which F (mod m) has rotational symmetry.


1



2, 3, 5, 6, 7, 9, 10, 13, 14, 17, 18, 23, 25, 26, 27, 34, 37, 41, 43, 46, 47, 49, 50, 53, 54, 61, 65, 67, 73, 74, 81, 82, 83, 85, 86, 89, 94, 97, 98, 103, 106, 107, 109, 113, 122, 123, 125, 127, 129, 130, 134, 137, 146, 149, 157, 161, 162, 163, 166, 167, 169, 170
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Flanagan et al. define F (mod m) as the set of points [x_i, y_i] (mod m) where x_i = Fibonacci(i) and y_i = Fibonacci(i+1).


LINKS



PROG

(PARI) \\ where pisano(n) is A001175
hasrot(m) = {if (m==1, return (0)); if (m==2, return (1)); my(j = pisano(m)/2); my(vf = [fibonacci(j), fibonacci(j+1)]); Mod(vf, m) == [0, 1]; }


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



