|
|
A344082
|
|
a(n) = n * Sum_{d|n} tau(d)^3 / d, where tau(n) is the number of divisors of n.
|
|
0
|
|
|
1, 10, 11, 47, 13, 110, 15, 158, 60, 130, 19, 517, 21, 150, 143, 441, 25, 600, 27, 611, 165, 190, 31, 1738, 92, 210, 244, 705, 37, 1430, 39, 1098, 209, 250, 195, 2820, 45, 270, 231, 2054, 49, 1650, 51, 893, 780, 310, 55, 4851, 132, 920, 275, 987, 61, 2440, 247, 2370, 297, 370, 67, 6721, 69
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..61.
|
|
FORMULA
|
G.f.: Sum_{k >= 1} tau(k)^3 * x^k/(1 - x^k)^2.
If p is prime, a(p) = 8 + p.
|
|
MATHEMATICA
|
a[n_] := n * DivisorSum[n, DivisorSigma[0, #]^3/# &]; Array[a, 61] (* Amiram Eldar, May 09 2021 *)
|
|
PROG
|
(PARI) a(n) = n*sumdiv(n, d, numdiv(d)^3/d);
(PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, numdiv(k)^3*x^k/(1-x^k)^2))
|
|
CROSSREFS
|
Cf. A007429, A062369, A097988, A344043.
Sequence in context: A042395 A041210 A267340 * A042413 A041212 A257313
Adjacent sequences: A344079 A344080 A344081 * A344083 A344084 A344085
|
|
KEYWORD
|
nonn,mult
|
|
AUTHOR
|
Seiichi Manyama, May 09 2021
|
|
STATUS
|
approved
|
|
|
|