Geoffrey Critzer

Finite Topological Spaces

Abstract: In this note we give generating functions that count various statistics relavent to finite topological spaces.

There is a natural bijection (sometimes called the specialization preorder) between the set of all finite topologies that can be placed on an n-set and the set of all pre-orders on $[n]$. Moreover, the same bijection shows that the T_{0} topologies are in correspondence with the set of all posets on $[n]$. The bijection avails us the opportunity to view a finite topological space as a transitive digraph. Hence, the method of deriving generating functions via the symbolic method (Cf. [1]) is highly applicable.

Let $A(x)=\sum_{n \geq 0} a_{n} \frac{x^{n}}{n!}$ where a_{n} is the number of posets on $[n]$. A001035.

Then ...

$$
A(\exp (x)-1)=\sum_{n \geq 0} b_{n} \frac{x^{n}}{n!} \text { where } b_{n} \text { is the number of preorders on }[n] . \quad \mathrm{A} 000798
$$

$A(y(\exp (x)-1))=\sum_{n \geq 0} \sum_{k=0}^{n} b_{n, k} y^{k} \frac{x^{n}}{n!}$ where $b_{n, k}$ is the number of topologies on $[n]$ that have exactly k topologically distict elements. Equivalently, $b_{n, k}$ is the number of topologies τ on $[n]$ that have exactly k basis elements in the unique minimal basis of τ. A topology is T_{0} if and only if $b_{n, k}=n$. A247231.
$\log (A(x))+1=\sum_{n \geq 0} c_{n} \frac{x^{n}}{n!}$ where c_{n} is the number of connected T_{0} topologies on $[n]$. A001927
$\log (A(\exp (x)-1))+1=\sum_{n>0} c_{n} \frac{x^{n}}{n!}$ where c_{n} is the number of connected topologies on $[n]$. A001929
$\exp (y \log (A(x)))=A(x)^{y}=\sum_{n \geq 0} \sum_{k=0}^{n} d_{n, k} y^{k} \frac{x^{n}}{n!}$ where $d_{n, k}$ is the number of topologies on $[n]$ that have exactly \bar{k} connected components.

$$
\exp (y \log (A(\exp (x)-1)))=A(\exp (x)-1)^{y}=\sum_{n \geq 0} \sum_{k=0}^{n} d_{n, k} y^{k} \frac{x^{n}}{n!} \text { where } d_{n, k}
$$ is the number of T_{0} topologies on $[n]$ that have exactly k connected components. A247232

A set is clopen if and only if it is a union of connected components.
$\left.A(x)^{y}\right|_{y=2}=A(x)^{2}=\sum_{n \geq 0} f_{n} \frac{x^{n}}{n!}$ where f_{n} is the number of ordered pairs (τ, C) with τ a T_{0} topology on $[n]$ and C a clopen set in τ. Equivalently, f_{n} is the number of ways to build a T_{0} topology on a subset S of $[n]$ then build another T_{0} topology on $[n]-S$.
$\left.A(\exp (x)-1)^{y}\right|_{y=2}=A(\exp (x)-1)^{2}=\sum_{n \geq 0} g_{n} \frac{x^{n}}{n!}$ where g_{n} is the number of ordered pairs (τ, C) with τ a topology on $[n]$ and C a clopen set in τ. Equivalently, g_{n} is the number of ways to build a topology on a subset S of $[n]$ then build another topology on $[n]-S$. A281547
$\left.A(x)^{y}\right|_{y \rightarrow 1+y}=A(x)^{1+y}=\sum_{n \geq 0} \sum_{k=0}^{n} t_{n, k} y^{k} \frac{x^{n}}{n!}$ where $t_{n, k}$ is the number of ordered pairs (τ, C) with τ a T_{0} topology on $[n]$ and C a clopen set in τ with exactly k components.
$\left.A(\exp (x)-1)^{y}\right|_{y \rightarrow 1+y}=A(\exp (x)-1)^{1+y}=\sum_{n \geq 0} \sum_{k=0}^{n} t_{n, k} y^{k} \frac{x^{n}}{n!}$ where $t_{n, k}$ is the number of ordered pairs (τ, C) with τ a topology on $[n]$ and C a clopen set in τ with exactly k components.
$\left(\log (A(x)+1) A(x)=\sum_{n \geq 0} f_{n} \frac{x^{n}}{n!}\right.$ where f_{n} is the number of ordered pairs (τ, C) with τ a T_{0} topology on $[n]$ and C a clopen and connected set in τ.
$\left(\log (A(\exp (x)-1)+1) A(\exp (x)-1)=\sum_{n \geq 0} f_{n} \frac{x^{n}}{n!}\right.$ where f_{n} is the number of ordered pairs (τ, C) with τ a topology on $[n]$ and C a clopen and connected set in τ. A284762

A transitive digraph is a partial ordering of two types of atoms (reflexive and irreflexive elements) and equivalence classes of size two or more.
$A(x+x+\exp (x)-1-x)=A(x+\exp (x)-1)=\sum_{n>0} f_{n} \frac{x^{n}}{n!}$ where f_{n} is the number of transitive digraphs on n labeled nodes. A006905
$A(x+\exp (y x)-1)=\sum_{n \geq 0} \sum_{k=0}^{n} t_{n, k} y^{k} \frac{x^{n}}{n!}$ where $t_{n, k}$ is the number of transitive digraphs on n labeled nodes with exactly k reflexive points. We note that $t_{n, 0}$ is the number of preorders because transitive and irreflexive imply antisymmetric. Also, $t(n, n)$ is the number of preorders. A245767
$A(x+\exp (x)-1)^{y}=\sum_{n \geq 0} \sum_{k=0}^{n} t_{n, k} y^{k} \frac{x^{n}}{n!}$ where $t_{n, k}$ is the number of transitive digraphs on n labeled nodes with exactly k connected components. A343882

Bibliography

[1] Phillipe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009.

