%I #8 Aug 27 2021 12:52:16
%S 17,29,54,95,124,152,239,284,294,399,419,523,644,647,774,923,944,1175,
%T 1175,1295,1346,1595,1595,1827,1945,2063,2142,2273,2409,2581,2678,
%U 2735,3053,3158,3158,3608,3899,4370,4370,4370,4460,4689,4940,5237,5558,5558,5828
%N Frobenius number of the triangular numbers (A000217) starting with the n-th term.
%C The Frobenius number of a set S with gcd 1 is the largest nonnegative integer that cannot be represented as a nonnegative integer linear combination of the elements of S.
%e For n = 3 the Frobenius number of {6,10,15,21,28,...} is 29.
%t Module[{nn=50,tr},tr=Accumulate[Range[2nn]];Table[FrobeniusNumber[ Drop[ tr,n]],{n,nn}]] (* _Harvey P. Dale_, Aug 27 2021 *)
%Y Cf. A000217.
%K nonn
%O 2,1
%A _Jeffrey Shallit_, Mar 22 2021