Call a nonnegative integer legal if it is not in [A347298.](https://oeis.org/A347298) That is, a number is legal if it does not contain an even digit d immediately followed by a digit $q \leq d$. Trivially, [A342042](https://oeis.org/A342042) contains only legal numbers.

Theorem. [A342042](https://oeis.org/A342042) contains every legal number.

Proof. Suppose there's a legal number that does not appear in the sequence. Let N be the smallest such counterexample. Then for some index $n, \{a(1), ..., a(n)\}\)$ contains every legal number less than N. If for some $n' > n$, $a(n')$ is odd, then the next term will be the smallest legal number not yet in the sequence. Thus, $a(n'+1) = N$, a contradiction. Hence, it is sufficient to prove that the sequence contains infinitely many odd numbers.

Suppose that for some n_0 , $a(n)$ is even for every $n > n_0$. Fix an even digit d such that the sequence contains infinitely many terms ending with d . At least one such d exists. Let $n > n_0$ be such that $a(n)$ ends with d. By our assumption, the next term, $a(n + 1)$, is even. Let $M = a(n + 1)$ be this term. M starts with a digit larger than d and is legal. The goal is to show that $M + 1$ appears in the sequence at an index larger than n_0 . As $M + 1$ is odd, this yields a contradiction.

Claim: $M + 1$ is legal and does not appear in the sequence before M. (1)

Proof of the claim: M is legal and ends with an even digit q (which may or may not be equal to d). Then $M + 1$ has the same digits as M except that it ends with the odd digit $q + 1 > q$. Clearly it is legal. Now, suppose that it appears in the sequence before M. That is, there's some index $k < n+1$ such that $a(k) = M + 1$. However, then it would also be possible to extend the sequence at position k with the value M . This is a smaller value, so it is a contradiction. \Box

Now, let $n' > n$ be the next index such that $a(n')$ ends with d. Such an index exists by our assumption on d.

Case 1: $M + 1$ does not appear before index n' : Then, since the last time a term ended with d (at index n), the smallest possible value that could extend the sequence was M , we now get that the smallest possible value that can extend the sequence is $M + 1$. Thus, $a(n'+1) = M + 1.$

Case 2: $M+1$ appears before index n' : Then by (1), there's n'' such that $n+1 < n'' < n'$, and $a(n'') = M + 1$.

In both cases, we get that $M + 1$ is a term of the sequence appearing at an index larger than n_0 .