login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of ways to write n as an ordered sum of 9 nonzero tetrahedral numbers.
6

%I #10 Jul 19 2022 08:04:44

%S 1,0,0,9,0,0,36,0,0,93,0,0,198,0,0,378,0,0,624,9,0,918,72,0,1269,252,

%T 0,1597,576,0,1836,1134,0,2025,2025,0,2058,3096,36,1926,4356,252,1764,

%U 5877,756,1470,7182,1512,1134,8388,2772,882,9576,4608,588,10035,6552,462

%N Number of ways to write n as an ordered sum of 9 nonzero tetrahedral numbers.

%H G. C. Greubel, <a href="/A341808/b341808.txt">Table of n, a(n) for n = 9..1000</a>

%F G.f.: ( Sum_{k>=1} x^binomial(k+2,3) )^9.

%t nmax = 66; CoefficientList[Series[Sum[x^Binomial[k + 2, 3], {k, 1, nmax}]^9, {x, 0, nmax}], x] // Drop[#, 9] &

%o (Magma)

%o R<x>:=PowerSeriesRing(Integers(), 70);

%o Coefficients(R!( (&+[x^Binomial(j+2,3): j in [1..70]])^9 )); // _G. C. Greubel_, Jul 18 2022

%o (SageMath)

%o def f(m, x): return ( sum( x^(binomial(j+2,3)) for j in (1..8) ) )^m

%o def A341808_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( f(9, x) ).list()

%o a=A341808_list(100); a[9:71] # _G. C. Greubel_, Jul 18 2022

%Y Cf. A000292, A023533, A023670, A282582, A340954, A341792, A341794, A341795, A341796, A341797, A341806, A341807, A341809.

%K nonn

%O 9,4

%A _Ilya Gutkovskiy_, Feb 20 2021