Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #8 Feb 10 2021 19:29:17
%S 1,19,163,835,2869,7189,14581,27253,49861,84663,129303,190071,284055,
%T 409335,550455,732855,995241,1312617,1656153,2077497,2634777,3300057,
%U 4003641,4804281,5872665,7129227,8363307,9784491,11635755,13670475,15727755,18066315,20950491
%N Number of integer solutions to (x_1)^2 + (x_2)^2 + ... + (x_9)^2 <= n.
%C Partial sums of A008452.
%H <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>
%F G.f.: theta_3(x)^9 / (1 - x).
%F a(n^2) = A055415(n).
%p b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
%p b(n, k-1)+2*add(b(n-j^2, k-1), j=1..isqrt(n))))
%p end:
%p a:= proc(n) option remember; b(n, 9)+`if`(n>0, a(n-1), 0) end:
%p seq(a(n), n=0..32); # _Alois P. Heinz_, Feb 10 2021
%t nmax = 32; CoefficientList[Series[EllipticTheta[3, 0, x]^9/(1 - x), {x, 0, nmax}], x]
%t Table[SquaresR[9, n], {n, 0, 32}] // Accumulate
%Y Cf. A000122, A001650, A008452, A046895, A055408, A055415, A057655, A117609, A122510, A175360, A175361, A302860, A341396, A341397, A341399.
%K nonn
%O 0,2
%A _Ilya Gutkovskiy_, Feb 10 2021