login
Sequence whose partial sums give A000005.
8

%I #27 Feb 21 2021 14:13:44

%S 1,1,0,1,-1,2,-2,2,-1,1,-2,4,-4,2,0,1,-3,4,-4,4,-2,0,-2,6,-5,1,0,2,-4,

%T 6,-6,4,-2,0,0,5,-7,2,0,4,-6,6,-6,4,0,-2,-2,8,-7,3,-2,2,-4,6,-4,4,-4,

%U 0,-2,10,-10,2,2,1,-3,4,-6,4,-2,4,-6,10,-10,2,2,0,-2,4,-6,8,-5,-1,-2,10,-8,0,0,4,-6,10

%N Sequence whose partial sums give A000005.

%C Essentially a duplicate of A051950.

%C Convolved with A000041 gives A138137.

%C Convolved with A000027 gives the nonzero terms of A006218.

%C Convolved with A000070 gives the nonzero terms of A006128.

%C Convolved with A014153 gives the nonzero terms of A284870.

%C Convolved with A036469 gives the nonzero terms of A305082.

%C Convolved with the nonzero terms of A006218 gives A055507.

%C Convolved with the nonzero terms of A000217 gives the nonzero terms of A078567.

%F a(n) = A051950(n) for n > 1.

%t Join[{1}, Differences[Table[DivisorSigma[0, n], {n, 1, 90}]]] (* _Amiram Eldar_, Feb 06 2021 *)

%Y 1 together with A051950.

%Y Cf. A000005 (partial sums).

%Y Cf. A000027, A000041, A000070, A000217, A006128, A006218, A014153, A036469, A055507, A078567, A138137, A284870, A305082, A340793.

%K sign,easy

%O 1,6

%A _Omar E. Pol_, Feb 04 2021