%I #9 Dec 13 2021 16:15:05
%S 0,0,1,0,1,0,1,0,2,0,1,1,1,0,2,0,1,1,1,0,2,0,1,1,2,0,3,0,1,2,1,0,2,0,
%T 2,2,1,0,2,1,1,1,1,0,4,0,1,2,2,1,2,0,1,2,2,1,2,0,1,3,1,0,4,0,2,1,1,0,
%U 2,2,1,3,1,0,4,0,2,1,1,1,5,0,1,3,2,0,2,0,1,5,2,0,2,0,2,2,1,1,4,1,1,1,1,0,5,0,1,6
%N Number of factorizations of n into factors > 1 with odd least factor.
%H Antti Karttunen, <a href="/A340832/b340832.txt">Table of n, a(n) for n = 1..20000</a>
%e The a(n) factorizations for n = 45, 108, 135, 180, 252:
%e (45) (3*36) (135) (3*60) (3*84)
%e (5*9) (9*12) (3*45) (5*36) (7*36)
%e (3*15) (3*4*9) (5*27) (9*20) (9*28)
%e (3*3*5) (3*6*6) (9*15) (5*6*6) (3*3*28)
%e (3*3*12) (3*5*9) (3*3*20) (3*4*21)
%e (3*3*3*4) (3*3*15) (3*4*15) (3*6*14)
%e (3*3*3*5) (3*5*12) (3*7*12)
%e (3*6*10) (3*3*4*7)
%e (3*3*4*5)
%t facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t Table[Length[Select[facs[n],OddQ@*Min]],{n,100}]
%o (PARI) A340832(n, m=n, fc=1) = if(1==n, (m%2)&&!fc, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A340832(n/d, d, 0*fc))); (s)); \\ _Antti Karttunen_, Dec 13 2021
%Y Positions of 0's are A340854.
%Y Positions of nonzero terms are A340855.
%Y The version for partitions is A026804.
%Y Odd-length factorizations are counted by A339890.
%Y The version looking at greatest factor is A340831.
%Y - Factorizations -
%Y A001055 counts factorizations.
%Y A045778 counts strict factorizations.
%Y A316439 counts factorizations by product and length.
%Y A340101 counts factorizations into odd factors, odd-length case A340102.
%Y A340607 counts factorizations with odd length and greatest factor.
%Y A340653 counts balanced factorizations.
%Y - Odd -
%Y A000009 counts partitions into odd parts.
%Y A026424 lists numbers with odd Omega.
%Y A027193 counts partitions of odd length.
%Y A058695 counts partitions of odd numbers (A300063).
%Y A066208 lists numbers with odd-indexed prime factors.
%Y A067659 counts strict partitions of odd length (A030059).
%Y A174726 counts ordered factorizations of odd length.
%Y A244991 lists numbers whose greatest prime index is odd.
%Y A340692 counts partitions of odd rank.
%Y Cf. A050320, A160786, A340385, A340596, A340599, A340654, A340655, A340931.
%K nonn
%O 1,9
%A _Gus Wiseman_, Feb 04 2021
%E Data section extended up to 108 terms by _Antti Karttunen_, Dec 13 2021