login
a(n)^2 is the end of the first occurrence of n consecutive perfect powers, all of which are squares with exponents equal to 2 (A111245).
4

%I #5 Jan 18 2021 18:36:59

%S 2,7,14,22,41,70,110,140,181,272,385,419,573,702,868,1122,1364,1551,

%T 1837,2081,2435,2892,3330,3718,4265,4862,5379,6022,6604,7320,8241,

%U 9010,9898,10913,12029,12969,14149,15363,16610,17928,19199,20704,22331,23912,25794,27406

%N a(n)^2 is the end of the first occurrence of n consecutive perfect powers, all of which are squares with exponents equal to 2 (A111245).

%F a(n) = sqrt(A340662(n)) = A340663(n) + n - 1.

%e See A340661.

%Y Cf. A000290, A001597, A111245, A340661, A340662, A340663, A340695.

%K nonn

%O 1,1

%A _Hugo Pfoertner_, Jan 18 2021