Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #24 Dec 12 2020 01:44:08
%S 1,2,4,6,10,16,18,22,38,44,46,56,94,112,138,140,168,184,296,342,364,
%T 366,370,476,520,862,908,954,1042,1052,1102,1146,1522,2008,2182,2200,
%U 2270,2592,2630,2952,4960,5100,5328,6054,6992,6998,7710,8044,8194,9056,10566
%N Compound Zeckendorf diagonal sequence in two dimensions, read by antidiagonals.
%H Peter Kagey, <a href="/A339574/b339574.txt">Table of n, a(n) for n = 1..105</a> (first 14 rows, flattened)
%H Chen, E., Chen, R., Guo, L., Jiang, C., Miller, S. J., Siktar, J. M., & Yu, P., <a href="https://arxiv.org/abs/1809.05829">Gaussian Behavior in Zeckendorf Decompositions From Lattices</a>, arXiv preprint arXiv:1809.05829 [math.NT], 2018. Also Fib. Q., 57:5 (2019), 201-212.
%e The array begins:
%e ...
%e 6992, ...
%e 2200, 6054, ...
%e 954, 2182, 5328, ...
%e 364, 908, 2008, 5100, ...
%e 138, 342, 862, 1522, 4966, ...
%e 44, 112, 296, 520, 1146, 2952, ...
%e 16, 38, 94, 184, 476, 1102, 2630, ...
%e 4, 10, 22, 56, 168, 370, 1052, 2592, ...
%e 1, 2, 6, 18, 46, 140, 366, 1042, 2270, ...
%e The first few antidiagonals are:
%e 1;
%e 2, 4;
%e 6, 10, 16;
%e 18, 22, 38, 44;
%e 46, 56, 94, 112, 138;
%e 140, 168, 184, 296, 342, 364;
%e 366, 370, 476, 520, 862, 908, 954;
%e 1042, 1052, 1102, 1146, 1522, 2008, 2182, 2200;
%e 2270, 2592, 2630, 2952, 4960, 5100, 5328, 6054, 6992;
%e ...
%Y See A335154 for the "simple" (as opposed to compound) version.
%K nonn,tabl
%O 1,2
%A _N. J. A. Sloane_, Dec 11 2020