%I #10 Dec 14 2020 16:01:34
%S 5,137,3967,25087,242899421
%N Primes p such that A007088(p) == 1 (mod p).
%e a(3) = 3967 is in the sequence because 3967 = 111101111111_2 and 111101111111 == 1 (mod 3967).
%p p:= 1: R:= NULL:
%p while p < 3*10^8 do
%p p:= nextprime(p);
%p if convert(p,binary) mod p = 1 then R:= R, p fi
%p od:
%p R;
%o (Python)
%o from sympy import nextprime
%o A339566_list, p = [], 2
%o while p < 10**10:
%o if int(bin(p)[2:]) % p == 1:
%o A339566_list.append(p)
%o p = nextprime(p) # _Chai Wah Wu_, Dec 14 2020
%Y Cf. A007088, A339544.
%Y Primes in A339567.
%K nonn,more
%O 1,1
%A _Robert Israel_, Dec 09 2020