login
Odd composite integers m such that A087130(2*m-J(m,29)) == 5*J(m,29) (mod m), where J(m,29) is the Jacobi symbol.
3

%I #14 Dec 15 2020 10:24:03

%S 9,15,27,39,45,91,117,121,135,143,195,287,351,507,585,741,1521,1547,

%T 1573,1755,1935,2015,2067,2535,2601,3157,3227,3445,3505,3519,3731,

%U 4563,4879,4921,6201,6273,6543,6591,6721,7605,7803,8099,10335,10377,10403,10515

%N Odd composite integers m such that A087130(2*m-J(m,29)) == 5*J(m,29) (mod m), where J(m,29) is the Jacobi symbol.

%C The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy V(k*p-J(p,D)) == V(k-1)*J(p,D) (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.

%C The composite integers m with the property V(k*m-J(m,D)) == V(k-1)*J(m,D) (mod m) are called generalized Pell-Lucas pseudoprimes of level k- and parameter a.

%C Here b=-1, a=5, D=29 and k=2, while V(m) recovers A087130(m).

%D D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.

%D D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).

%D D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

%H Dorin Andrica, Vlad Crişan, and Fawzi Al-Thukair, <a href="https://doi.org/10.1016/j.ajmsc.2017.06.002">On Fibonacci and Lucas sequences modulo a prime and primality testing</a>, Arab Journal of Mathematical Sciences, 24(1), 9-15 (2018).

%t Select[Range[3, 20000, 2], CoprimeQ[#, 29] && CompositeQ[#] && Divisible[LucasL[2*# - JacobiSymbol[#, 29], 5] - 5*JacobiSymbol[#, 29], #] &]

%Y Cf. A087130, A071904, A339127 (a=5, b=-1, k=1).

%Y Cf. A339517 (a=1, b=-1), A339518 (a=3, b=-1), A339520 (a=7, b=-1).

%K nonn

%O 1,1

%A _Ovidiu Bagdasar_, Dec 07 2020