login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338820
a(n) = Sum_{i=1..n-1} (prime(i)^2 mod prime(n)).
3
0, 1, 8, 10, 21, 39, 54, 58, 61, 135, 134, 213, 217, 259, 267, 449, 413, 530, 645, 471, 661, 734, 741, 1029, 1194, 1257, 1219, 1434, 1372, 1456, 1547, 1939, 2007, 1987, 2471, 2319, 2802, 2610, 2564, 3334, 3548, 3684, 3612, 3576, 4399, 3686, 5071, 4810, 4647, 5066, 6035, 5213, 5890, 6335, 6327
OFFSET
1,3
COMMENTS
The sequence is not monotone, and not one-to-one: a(95)=a(97)=23038.
LINKS
EXAMPLE
The first three primes are 2, 3, 5, so a(3) = (2^2 mod 5) + (3^2 mod 5) = 4 + 4 = 8.
MAPLE
P:= [seq(ithprime(i), i=1..100)]:
seq(add(P[i]^2 mod P[n], i=1..n-1), n=1..100);
PROG
(PARI) a(n) = my(p=prime(n)); sum(i=1, n-1, lift(Mod(prime(i), p)^2)); \\ Michel Marcus, Nov 11 2020
CROSSREFS
Sequence in context: A300022 A346783 A073619 * A302429 A292999 A374111
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Nov 10 2020
STATUS
approved