login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations p of [n] such that |p(i) - p(i-1)| <= |p(i+1) - p(i)|.
2

%I #15 Sep 08 2021 12:40:02

%S 1,1,2,4,6,8,10,14,20,24,32,40,48,70,94,126,162,228,292,386,528,710,

%T 956,1298,1730,2342,3178,4192,5684,7720,10340,14002,18816,25372,34054

%N Number of permutations p of [n] such that |p(i) - p(i-1)| <= |p(i+1) - p(i)|.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a>

%e a(4) = 6: 1234, 2314, 2341, 3214, 3241, 4321.

%p b:= proc(s, x, y) option remember; `if`(s={}, 1, add(

%p `if`(x=0 or y=0 or abs(x-y)<=abs(y-j),

%p b(s minus {j}, y, j), 0), j=s))

%p end:

%p a:= n-> b({$1..n}, 0$2):

%p seq(a(n), n=0..16);

%t b[s_, x_, y_] := b[s, x, y] = If[s == {}, 1, Sum[If[x == 0 || y == 0 || Abs[x - y] <= Abs[y - j], b[s ~Complement~ {j}, y, j], 0], {j, s}]];

%t a[n_] := b[Range[n], 0, 0];

%t Table[Print[n, " ", a[n]]; a[n], {n, 0, 20}] (* _Jean-François Alcover_, Sep 08 2021, after _Alois P. Heinz_ *)

%Y Cf. A338614.

%K nonn,more

%O 0,3

%A _Alois P. Heinz_, Nov 05 2020

%E a(27)-a(34) from _Bert Dobbelaere_, Nov 15 2020