Proofs of the claims in the Comments section of Ayyyyyy

Hartmut F. W. Hoft, Oct 30, 2020

Throughout only odd numbers n =] p;¥ , p; distinct odd primes and e; positive, that have at least two
prime factors are considered; the total number of divisors of n, 1=d; < d, <... <dg,n = n, is do(n) =
T(e;j + 1). The symmetric representation of g(n), i.e. the list of the areas of its regions between two
adjacent Dyck paths, is denoted by srs(n), see A237270 & A237271, and its total area by area(srs(n)).
Functions with two arguments, such as a237048(n,k), denote the value of the k-th entry in the n-th row
of the respective irregular triangle of the sequence referenced, i.e. A237048; when a single argument is
used, such as a237048(n), it represents the list of values in the entire n-th row. All triangles referenced

have the same shape; their n-th row has row(n) = |_( \j 8n+1 - 1)/2J many entries so that the 2-nd
indices in functions are assumed to be in the range 1...row(n)+1.

t(n,k) =a235791(n,k) = [% - 1”71] and a235791(n,row(n)+1) = 0 in the triangle of A235791.

leg(n,k) =a237591(n,k) = t(n,k) - t(n,k+1) is the length of the k-th segment of the n-th Dyck path; legs(n)
represents the entire n-th row.
a237048(n,k) =1 when k|n or when k=2 x s where sinand 2 x s <row(n) < f, otherwise a237048(n,k) =

0; thus all (odd) divisors of n are represented by 1’s in the n-th row of the triangle of A237048.

width(n,k) = a249223(n,k) = 5, (-1y*! a237048(n, j) is the width of the k-th leg between the n-th and
(n-1)-st Dyck paths; widths(n) represents the entire n-th row of widths and diag(n) = width(n,row(n)) is
the area of the squares between the Dyck paths containing the diagonal.

From A249223 we have: area(srs(n)) = 2x legs(n) . widths(n) - diag(n) (1)

where “.” denotes the inner product.

The length of a symmetric central region starting with leg sis:

2% T2 leg(n, i)-1= 2% FZ(t(n, )= t(n, i+1)) -1= 2x t(n,s) - 1 2)

Since a237048(n,1) =a237048(n,2) = 1 it follows that width(n,1) = 1 and width(n,2) =0, i.e. the first and

last region of srs(n) each consists of a single leg of width 1 and length (hence area) leg(n,1) = [”ZLI] .

Therefore, srs(n) consists of 3 regions with a center region of maximum width 2 when widths(n) has the
following numeric pattern in the triangle of A249223:

positionindexinrow: 1 2 d; d; 2xd, ds 2xd; ds...
value at position: 10..01..12..21..12..21..12... (3)
divisor represented: d T d, ds 5—2 de =+ ds ...
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Lemma 1:
When srs(n) consists of 3 regions of maximum width 2 the center region contains dgy(n) - 3 areas of
width 2. An area including the diagonal has width 2 when gy(n) is even.

Lemma 2:
The central region of srs(n) =srs(3¢x 5), e 21, has 2xe - 1 areas of width 2.

Lemma 3:
45=5 x 32 js the only odd number in the second column of the first table.

Lemma 4:

Forn =p x g, a product of distinct odd primes, srs(n) consists of 3 regions of maximum width 2 pre-
ciselywhenp<qg<2xp.

Lemma 5:

The area of srs(p = q) = ( L;’*—l ,p+q, p—”zq*—l) ,where pand qgare primesand p<q<2 x p, equals o(p x
q). Furthermore, the central region consists of two symmetric subparts of width 1 of length 2 x q - p and
2xp-q.

Proof of Lemma 1:

When for someindex h, dy < row(n) < 2 x dp_; then n has an even number of divisors, h = Q’éﬂl +1,
and by pattern (3) the center region of srs(n) has 2x(h - 3) + 1 = gp(n) — 3 areas of width 2. Similarly,
when 2 x dp_1 < row(n) < dps1 then n has an odd number of divisors, h = gﬁﬂ2>’—1+ 1, and by pattern (3)
the center region of srs(n) has 2x(h - 2) = gy(n) - 3 areas of width 2. An alternative description of
pattern (3)is: 1= d; < d, < d3 and dj < 2 x di-y < djs1,for3<is lﬂ’éﬂlj+1:h.

[m}

Proof of Lemma 2:

1<2<3<5<2x3<3%2<2x5<Db(l)<..<b(i) <2x3*< 342 < 2xb(i) < b(i+1) <...,fori=1,
shows that pattern (3) for widths is satisfied so that 0y(3€<5)-3=2x(e+1)-3=2xe-1,fore=1.

In addition, pattern (3) requires for an even number 2¥x q, k = 1, q odd, that its two smallest proper
divisors must satisfy 4 < 2K*1 < d, < d3 < 2%*1x d,, and for an odd number that its two smallest proper
divisors must satisfy 2 < d; < d3 < 2 x d; so that the numbers b(i) are the smallest numbers in their
respective columns.

[m]

Proof of Lemma 3:

We eliminate the three possible patterns for prime factors of n:

p x g%, exceptforp=3&q=5; p*;p x q x r, distinct primes.

(a) Let n=p x g%, with p<g? and p, q distinct odd primes. Then pattern (3) is fulfilled precisely when

q<p<2xq<g< [(\IBxpxq2+l—l)/2J<2xp (*)

since p<q<2xp<pxq<2x(q -satisfying pattern (3) - is a contradiction.
Therefore, (*) implies g?< 2xp < 4xq,i.e.q=3andp=5.
g* < pwouldimply q < g2 <2 x q < p to satisfy pattern (3), contradicting that q is prime.
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(b) Let n=p3, with panodd prime. Then 1 <2 < p < 2xp < p? implies that srs( p3) consists of 4
regions (see also A280107).

(c) Letn=pxqxrwithp<gqg<rdistinct odd primes. If r<p = q then pattern (3) provides p < q < 2x
p<r<2xg<pxqgsrow(pxqxr)<2xr,

but r < 2 x q togetherwith p=5implies 2 xr <4 xq < p xq < 2 xr,acontradiction. Therefore, p=
3whichforcesq=5andr<2 = q=10,i.e.r=7,sothat both 10=2 x gand 14 =2 x r are smaller than 15
=p x qimplying that srs(3x5x7) has 4 regions.

For the inequality p<q<p x g <r pattern (3) leads to the contradiction

p<q<2xp<pxq<2xq_

[m]

Proof of Lemma 4:
Pattern (3) is fulfilled precisely when

a s [(Vaxpxg+1-1)/2]<2xp
& 2xqtl s \/8xpxq+l<4xp+l

=3 4xq2+4xq+1S8xpxq+1<]_6xp2+8xp+]_
& q+ls2xp
O

Proof of Lemma 5:

Pattern (3) forn=p x qis:

position in row: 1 2 p g row(pxq) < 2xp
value at position: 1 0..01..12 .. 2 ..

divisor represented: 1 pxq p q
1 fork=1,p..q-1
Therefore, width(n,k) ={ 0 fork=2..p-1
2 fork=gq ..row(n)

leg(n,1) = &= 2” and with its width of 1 establishes the area of each outer region.

By formula (2) the length of the entire symmetric central region is
2xt(np)-1=2x[BLL_B2] .1 = 2xq-(p+1)+2)-1=2xq-p.

Similarly, the length of the symmetric extent of width 2 in the central region is
2xtng)-1=2x BT -9R]-1=(2xp-(q+1)+2)-1=2xp-q.

Therefore, area(srs(n)) = 2 x “’42‘7+—1+(2 xq-p)+(2xp-q) =pxq+p+q+1=0a(n).
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