Proofs of the claims in the Comments section of Ayyyyyy
Hartmut F. W. Hoft, Oct 30, 2020

Throughout only odd numbers $\mathrm{n}=\prod p_{i}{ }^{e_{i}}, p_{i}$ distinct odd primes and e_{i} positive, that have at least two prime factors are considered; the total number of divisors of $\mathrm{n}, 1=d_{1}<d_{2}<\ldots<d_{\sigma_{0}(n)}=\mathrm{n}$, is $\sigma_{0}(\mathrm{n})=$ $\Pi\left(e_{i}+1\right)$. The symmetric representation of $\sigma(\mathrm{n})$, i.e. the list of the areas of its regions between two adjacent Dyck paths, is denoted by srs(n), see A237270 \& A237271, and its total area by area(srs(n)). Functions with two arguments, such as a237048(n,k), denote the value of the k-th entry in the n-th row of the respective irregular triangle of the sequence referenced, i.e. A237048; when a single argument is used, such as a237048(n), it represents the list of values in the entire n-th row. All triangles referenced have the same shape; their n-th row has row $(n)=\lfloor(\sqrt{8 n+1}-1) / 2\rfloor$ many entries so that the 2-nd indices in functions are assumed to be in the range $1 . . . r o w(n)+1$.
$\mathrm{t}(\mathrm{n}, \mathrm{k})=\mathrm{a} 235791(\mathrm{n}, \mathrm{k})=\left\lceil\frac{n+1}{k}-\frac{\mathrm{k}+1}{2}\right\rceil$ and $233591(\mathrm{n}$, row $(\mathrm{n})+1)=0$ in the triangle of A235791.
$\operatorname{leg}(n, k)=\operatorname{a237591}(n, k)=t(n, k)-t(n, k+1)$ is the length of the k-th segment of the n-th Dyck path; legs (n) represents the entire n-th row.
a237048(n,k) $=1$ when $k \mid n$ or when $k=2 \times s$ where $\mathrm{s} \mid \mathrm{n}$ and $2 \times \mathrm{s} \leq \operatorname{row}(\mathrm{n})<\frac{n}{s}$, otherwise a237048(n,k)= 0 ; thus all (odd) divisors of n are represented by 1 's in the n-th row of the triangle of A237048.
width $(\mathrm{n}, \mathrm{k})=\mathrm{a} 249223(\mathrm{n}, \mathrm{k})=\sum_{j=1}^{k}(-1)^{j+1} \mathrm{a} 237048(n, j)$ is the width of the k-th leg between the n-th and $(\mathrm{n}-1)$-st Dyck paths; widths(n) represents the entire n -th row of widths and $\operatorname{diag}(\mathrm{n})=\operatorname{width}(\mathrm{n}, \mathrm{row}(\mathrm{n}))$ is the area of the squares between the Dyck paths containing the diagonal.
From A249223 we have: $\operatorname{area}(\operatorname{srs}(n))=2 \times \operatorname{legs}(n) . \operatorname{widths}(n)-\operatorname{diag}(n)$
where "." denotes the inner product.
The length of a symmetric central region starting with leg s is:
$2 \times \sum_{i=s}^{\mathrm{row}(n)} \operatorname{leg}(n, i)-1=2 \times \sum_{i=s}^{\mathrm{row}(n)}(t(n, i)-t(n, i+1))-1=2 \times \mathrm{t}(\mathrm{n}, \mathrm{s})-1$
Since a237048(n,1) $=\operatorname{a237048}(\mathrm{n}, 2)=1$ it follows that width $(\mathrm{n}, 1)=1$ and width $(\mathrm{n}, 2)=0$, i.e. the first and last region of $\operatorname{srs}(n)$ each consists of a single leg of width 1 and length (hence area) leg $(n, 1)=\left\lceil\frac{n+1}{2}\right\rceil$.
Therefore, $\operatorname{srs}(\mathrm{n})$ consists of 3 regions with a center region of maximum width 2 when widths (n) has the following numeric pattern in the triangle of A249223:
position index in row: $1 \begin{array}{llllllll} & 2 & d_{2} & d_{3} & 2 \times d_{2} & d_{4} & 2 \times d_{3} & d_{5} \ldots\end{array}$
value at position: 1 0 ... 01 ... $12 \ldots 21$... $12 \ldots 21$... $12 \ldots$
divisor represented: $\quad d_{1} \frac{n}{1} \quad d_{2} \quad d_{3} \quad \frac{n}{d_{2}} \quad d_{4} \quad \frac{n}{d_{3}} \quad d_{5} \ldots$

Lemma 1:
When srs(n) consists of 3 regions of maximum width 2 the center region contains $\sigma_{0}(n)-3$ areas of width 2 . An area including the diagonal has width 2 when $\sigma_{0}(n)$ is even.

Lemma 2:
The central region of $\operatorname{srs}(n)=\operatorname{srs}\left(3^{e} \times 5\right), e \geq 1$, has $2 \times e-1$ areas of width 2 .
Lemma 3:
$45=5 \times 3^{2}$ is the only odd number in the second column of the first table.
Lemma 4:
For $n=p \times q$, a product of distinct odd primes, $\operatorname{srs}(n)$ consists of 3 regions of maximum width 2 precisely when $\mathrm{p}<\mathrm{q}<2 \times \mathrm{p}$.

Lemma 5:
The area of $\operatorname{srs}(p \times q)=\left(\frac{p \times q+1}{2}, p+q, \frac{p \times q+1}{2}\right)$, where p and q are primes and $p<q<2 \times p$, equals $\sigma(p \times$ $q)$. Furthermore, the central region consists of two symmetric subparts of width 1 of length $2 \times q-p$ and $2 \times p-q$.

Proof of Lemma 1:

When for some index $h, d_{h} \leq \operatorname{row}(\mathrm{n})<2 \times d_{h-1}$ then n has an even number of divisors, $\mathrm{h}=\frac{\sigma_{0}(\mathrm{n})}{2}+1$, and by pattern (3) the center region of $\operatorname{srs}(n)$ has $2 \times(h-3)+1=\sigma_{0}(n)-3$ areas of width 2 . Similarly, when $2 \times d_{h-1} \leq \operatorname{row}(\mathrm{n})<d_{h+1}$ then n has an odd number of divisors, $\mathrm{h}=\frac{\sigma_{0}(n)-1}{2}+1$, and by pattern (3) the center region of $\operatorname{srs}(\mathrm{n})$ has $2 \times(\mathrm{h}-2)=\sigma_{0}(n)-3$ areas of width 2 . An alternative description of pattern (3) is: $1=d_{1}<d_{2}<d_{3}$ and $d_{i}<2 \times d_{i-1}<d_{i+1}$, for $3 \leq \mathrm{i} \leq\left\lfloor\frac{\sigma_{0}(n)}{2}\right\rfloor+1=\mathrm{h}$.

Proof of Lemma 2:
$1<2<3<5<2 \times 3<3^{2}<2 \times 5<b(1)<\ldots<b(i)<2 \times 3^{i+1}<3^{i+2}<2 \times b(i)<b(i+1)<\ldots$, for $i \geq 1$, shows that pattern (3) for widths is satisfied so that $\sigma_{0}\left(3^{e} \times 5\right)-3=2 \times(e+1)-3=2 \times e-1$, for $e \geq 1$. In addition, pattern (3) requires for an even number $2^{k} \times q, k \geq 1$, q odd, that its two smallest proper divisors must satisfy $4 \leq 2^{k+1}<d_{2}<d_{3}<2^{k+1} \times d_{2}$, and for an odd number that its two smallest proper divisors must satisfy $2<d_{2}<d_{3}<2 \times d_{2}$ so that the numbers $b(i)$ are the smallest numbers in their respective columns.

Proof of Lemma 3:
We eliminate the three possible patterns for prime factors of n :
$p \times q^{2}$, except for $p=3 \& q=5 ; p^{3} ; p \times q \times r$, distinct primes.
(a) Let $\mathrm{n}=\mathrm{p} \times \mathrm{q}^{2}$, with $\mathrm{p}<\mathrm{q}^{2}$ and p , q distinct odd primes. Then pattern (3) is fulfilled precisely when $q<p<2 \times q<q^{2} \leq\left\lfloor\left(\sqrt{8 \times p \times q^{2}+1}-1\right) / 2\right\rfloor<2 \times p$
since $p<q<2 \times p<p \times q<2 \times q$ - satisfying pattern (3) - is a contradiction.
Therefore, $\left(^{*}\right)$ implies $q^{2}<2 \times p<4 \times q$, i.e. $q=3$ and $p=5$.
$q^{2}<p$ would imply $q<q^{2}<2 \times q<p$ to satisfy pattern (3), contradicting that q is prime.
(b) Let $\mathrm{n}=\mathrm{p}^{3}$, with p an odd prime. Then $1<2<\mathrm{p}<2 \times \mathrm{p}<\mathrm{p}^{2}$ implies that $\mathrm{srs}\left(p^{3}\right)$ consists of 4 regions (see also A280107).
(c) Let $\mathrm{n}=\mathrm{p} \times \mathrm{q} \times \mathrm{r}$ with $\mathrm{p}<\mathrm{q}<\mathrm{r}$ distinct odd primes. If $\mathrm{r}<\mathrm{p} \times \mathrm{q}$ then pattern (3) provides $\mathrm{p}<\mathrm{q}<2 \times$ $p<r<2 \times q<p \times q \leq \operatorname{row}(p \times q \times r)<2 \times r$,
but $r<2 \times q$ together with $p \geq 5$ implies $2 \times r<4 \times q<p \times q<2 \times r$, a contradiction. Therefore, $p=$ 3 which forces $q=5$ and $r<2 \times q=10$, i.e. $r=7$, so that both $10=2 \times q$ and $14=2 \times r$ are smaller than 15 $=p \times q$ implying that $\operatorname{srs}(3 \times 5 \times 7)$ has 4 regions.
For the inequality $p<q<p \times q<r$ pattern (3) leads to the contradiction $\mathrm{p}<\mathrm{q}<2 \times \mathrm{p}<\mathrm{p} \times \mathrm{q}<2 \times \mathrm{q}$.

Proof of Lemma 4:

Pattern (3) is fulfilled precisely when

$$
\begin{aligned}
& q \leq\lfloor(\sqrt{8 \times p \times q+1}-1) / 2\rfloor<2 \times p \\
& \Leftrightarrow 2 \times q+1 \leq \sqrt{8 \times p \times q+1}<4 \times p+1 \\
& \Leftrightarrow 4 \times q^{2}+4 \times q+1 \leq 8 \times p \times q+1<16 \times p^{2}+8 \times p+1 \\
& \Leftrightarrow q+1 \leq 2 \times p
\end{aligned}
$$

Proof of Lemma 5:

Pattern (3) for $n=p \times q$ is:

$\operatorname{leg}(n, 1)=\frac{p \times q+1}{2}$ and with its width of 1 establishes the area of each outer region.
By formula (2) the length of the entire symmetric central region is
$2 \times \mathrm{t}(\mathrm{n}, \mathrm{p})-1=2 \times\left\lceil\frac{p \times q+1}{p}-\frac{p+1}{2}\right\rceil-1=(2 \times q-(p+1)+2)-1=2 \times q-p$.
Similarly, the length of the symmetric extent of width 2 in the central region is
$2 \times \mathrm{t}(\mathrm{n}, \mathrm{q})-1=2 \times\left\lceil\frac{p \times q+1}{q}-\frac{q+1}{2}\right\rceil-1=(2 \times p-(q+1)+2)-1=2 \times p-q$.
Therefore, $\operatorname{area}(\operatorname{srs}(n))=2 \times \frac{p \times q+1}{2}+(2 \times q-p)+(2 \times p-q)=p \times q+p+q+1=\sigma(n)$.

