%I #11 Oct 22 2020 01:44:11
%S 1,2,4,6,10,6,6,8,6,8,8,6,6,6,6,8,8,8,6,6,6,6,8,8,8,8,8,6,6,6,6,6,6,6,
%T 6,6,8,8,8,8,8,8,8,8,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,
%U 8,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6
%N First difference of the subword complexity function of the Fibonacci-Thue-Morse sequence (A095076).
%C The subword complexity function of a sequence is the number of distinct blocks of length n occurring in the sequence.
%H Michel Dekking, <a href="http://www.i2m.univ-amu.fr/wiki/Combinatorics-on-Words-seminar/_media/seminar2020:slides20201019dekking.pdf">The structure of Zeckendorf representations and base phi expansions</a>, talk for the One World Seminar on Combinatorics on Words, October 19 2020.
%H Jeffrey Shallit, <a href="https://arxiv.org/abs/2010.10956">Subword complexity of the Fibonacci-Thue-Morse sequence: the proof of Dekking’s conjecture</a>, arXiv:2010.10956 [cs.DM], 2020.
%F For all n >= 7, the sequence takes only the values 6 and 8, in longer and longer intervals that are of length a Fibonacci number, or a Fibonacci number +- 1. For the exact statement, see the paper of Shallit.
%Y Cf. A095076.
%K nonn
%O 0,2
%A _Jeffrey Shallit_, Oct 21 2020