Generalized harmonic series

T (m,n) is the least k such that the partial sum of the series H,,(k) = Zlﬁ:oﬁ is > n.

1) Formula for T (m, n)

[,1) Introduction

The differences H,,,(k) — n, for k = T(m, n), appear random, and it is very unlikely that a

formula exists which describes these differences. However, if H,,(k) is expanded
continuously, we can solve the equation H,,(k) = n with k = k, such that T(m,n) =
lko +1]. T(m,1) = 1is evident and will not be considered any more.

[,2) Solution of a local quadratic expansion

One can use a local quadratic expansion 25y Local quadratic expansion hi(x) of Hi(k}
h,,(x), i.e. a quadratic function with
k = T(m,n), h,,(k) = H,,(k) and 2
h,(k+1)=H,(k£1). 15 .
Let k, be the solution of h,,,(x) = n. '
h,(k) = 2is solved by k, = 2.644, see fig. 1
Generally: 05
2 _ 2.644 .
(I,Z)ko=k+£—\/(£) +M 05 1 15 2 25 3 35 4x
2a 2a a 1 1

: __1 1 and 2b =
with 2a = kil mkeD)El mk+1 = m(k+1)+1

,3) Solution of an asymptotic expansion ( for large k, see 1V)

(1,3a) kg = k; — ——with 0 < t < 1and k; = emn—c(m) _ X2
24k, 2m

(1,3b) t = 1 for k; — oo,
Parameter c(m):

c(1) =0.577215664901532.. | ¢(3) = 3.132033780020806.. | c(5) = 5.289039896592188.. | c(7) = 7.363980242224343..

c(2) =1.963510026021423.. | c(4) = 4.227453533376265.. | c(6) = 6.332127505374914.. | c(8) = 8.388492663295854..

A fast algorithm for c(m) is given in (V,2).

|,4) Checking (1,3) for small k,

In the following table, k = T(m,n),n > 1, is sorted and (1,2) is used for the evaluation of

(m,n) k ko t (m,n) k ko t (m,n) k ko t
(1,2) 3 2.6437 | 0.3129 (1,4) 30 | 29.153 | 0.8950 (5,2) 111 | 110.458 | 0.9666
(2,2) 7 6.6598 | 0.6193 (4,2) 43 | 42.740 | 0.9394 (1,6) 226 | 225.009 | 0.9928
(1,3) 10 | 9.7741 | 0.7399 (2,3) 56 | 55.627 | 0.9384 (6,2) 289 | 288.751 | 0.9913
(3,2) 17 | 16.766 | 0.8592 (1,5) 82 | 81.827 | 0.9663 (7,2) 762 | 761.413 | 0.9951

We see that the least occurring values of k or k, are large enough to satisfy (lI,3a).
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Even the tendency t = 1 in (1,3b) is confirmed for moderately large k.

[,5) Result
m+2

_ 1 . _ ,mn—-c(m) _ mt2
(,5a) k, = ky 24k, <ky<kywithk, =e py— m=>21n>1

As a conjecture, this condition generally holds. At least, it avoids bad terms.

(1,6) Remarks
A detailed discussion requires some auxiliary formulas most of which are asymptotic

. . . 1.
expansions. The derivations follow the same method: If k is large then x = P small and

Taylor’s formula can be applied. Numerical aspects, particularly the evaluation of c(m),
refer to these formulas and will be discussed in V).

I1) First asymptotic expansion

The harmonic series
H(k) =H(k—1) = 1+§+§+---+%=Z’fl=1%
has the well-known asymptotic expansion
1 1 1
(12) H(k) =log(k) +y + - ——=+0 ().
We start with
Hp(k) =1+ 3k_, (= — f(m, k) ) with (11,3 h) = ———
(k) = 1+ 3k (== f(m, b)) with (113a) f(m, h) = — — ——
= 1+—H(k) —S(m,k)  with (IL,3b) S(m, k) = Tf_, f(m, h)
Definition (Il,3a) F(m, k) = B(m) — S(m, k — 1) with B(m) = 1lim S(m, k)
An equivalent formula will be used in V,2):
(IL,3b) F(m, k) — F(m,k + 1) = f(m, k) Withllim F(m,k) =0
(1,4) Hy, (k) = 1+ — H(k) + F(m, k + 1) — (m)
The expansion of F(m, k + 1) will be derived separately, see (V,3):
1 m+1 m2+3m+2 1
(L5) Fm, Je +1) = —— — Do 4 R 4 o (=)
With (11,2), (11,4) and (I1,5):
1 1 1 1 m+1 m2+3m+2
Hy (k) =1+ (log(k) LT 12k22) — B(m) -lz_ m2k  2m3k? ' 6mtk3
1 m+2  mZ+em+6  mZ+3m+2
Hm(k) =1+ m (log(k) Ty 2mk  12m2k? 6m3k3 ) B ,B(m)
With ¢(m) =y + m(1 — B(m)):
1 2 2+6m+6 2+3m+2 1 .
(11,62) Hyy (k) = — (log(k) +o(m) + 20 - B ) +0 (F) with
(IL,6b) c(m) =y + m(1 — B(m)).




I11) Second asymptotic expansion

(11,1) can be transformed to another asymptotic expansion which allows to invert H,,,(k):

(,1) H,, (k) = %(log (k +22 -2 40 ( )) + c(m)>.

Proof:

. 1 m+2 m?+6m+6 m2+3m+2
Extract, with = =, r(x) = X — 2 4 ———x3 from (I1,6)
k 2m 12m?2 6m3

and transform the equation log(k + g(x)) = log(k) + r(x): xg(x) = e™® — 1.

, ) _ (m+2)x _2 (m+2)x 4
Taylor’s formula: xg(x) = - ” presam 0(x™)

_m+2 X (m+2)x? m+2 1 m+2 1
9 =t 5 T aem +0(x3):>g( ) 2m +z4k_48mk2+0(ﬁ) qed

I\V) Derivation of formula (1,3)

With (I11,1), the equation H,,,(k) = n can be solved, where n is a given integer:

+2 1 +2 1 -
(V1) k M 5 m T zak 418nmk2 +0 (ﬁ) = emnmetm

A first-order apprOX|mat|on (neglecting 0 (k™)) is k, = emn—c(m) _ r;—:
_ | m+2 ot _ m+2
Neglect|ng O(k )- k - ko - k]_ 24k, 48mk12 - kl 24k4 2mk

Thus, for large k,, we find:
(,3a) kg = kq — ﬁwith 0<t<1land(l,3b) t = 1fork,; = o0.q.e.d.
1

V) Series for f(m, k), F(m, k) and F(m,k + 1)

V,1) Expansion of f(m, k) = i _

—— see (11,3a)

1 1 x x 1
by a taylor series | x = — = == -—
k mk+1 m+x m 1+E

Transformation of

S () =+ S () = s ()
Result:  (V,1) f(m, k) = Xj2,(—1)/ (#)]




V,2) Expansion of F(m, k)
with F(m,k) — F(m,k + 1) = f(m, k) andllim F(m, k) = 0 see (l1,3b)

Set (V,2a) F(m, k) = Y72, a(r) %
F(m k) = F(mk +1) = X2, b(r) D(k,7) with D(k, 1) = — —

1

kT (k+1)T
Transformations
2 x =L Dk =¥ - oy b) £ (m, k) = 2, b(r) Dk, )
1+xrr+__1 _yo b 1 . 1]-T'+j 1
h(T X) — _ Z} 0( 1)]( j )x] - Zr:l (r)ﬁz:]zo(_ )+<]+ 1)5
leads to =Y/ b(r) Z?:o(_l)j (}r+ {) kr+11+j
D(kr)=xr(1—h(r,x)) o < (r—14+7j\ 1
j=1 J 0 wp— . (p—1
= x5z, -1 ([ ]) = X5 B0 = - DD ([ )
J=0 r]++]1 and withp = r +F{'
= = 2o(-1) (] N 1); fm k) = T5,(-1)P (=), using (v,1)

1 -1\P
ici icon- _ J — (== - —p—1-
Coefficient comparison: §: b(p j—1D(-1) ( 1) ( ) or, withr =p —1:

r+1
(V,2b) X} ob(r —H(=1)’ (]+1) ( 1) T=1yieldsb(1)=#
Forr > 1,b(r) can be evaluated by b(1), b(2), ..., b(r — 1):
-1 r+1 re1 ] ] r
v2e) 1) = () = T b0 =N (4 )
Evaluation: b(1) = %,b(z) = %,b(:g) - mz—r?;lm+2 p(4) = — MM

am> '
Particular result: (V,2d) F(m, k) = b(l) +

b(2) . b(3)
_|_ k2 k3 +

The series diverges, but is still useful, as long as the terms decrease, see annotations in VI.

V,3) Expansion of F(m, k + 1)
Combination of (V,1) and (V,2d):

F(mk+1)=F(m,k)—f(m,k)=aS)+a(2)+a(3)— —+——=+0()

k? k3 m2k?2 ~ m3k3 k4

m+1 m2+3m+2 1




VI) The parameter c(m) and numerical aspects

In(I,7) c(m) =y + m(l — ,B(m)), (11,3c) B(m) = 1lim S(m, k) has to be evaluated
individually.
m = 1: f(1) = 1 and c(m) = y (Euler’s constant).

Therefore T(1,n) = len"’ — %J = A002387(n) — 1.

m=2:52k) =%k, (5--==) B@ =;—3+;-ct=1-(1—3+5;-7%)
B(2) =1—-1log(2) = c(2) =y + 2log(2) =y + log(4),

T(2,n) = [e2V 77108 M| = |14e27Y | =p092315(n).

Form > 2, B(m) has to be evaluated numerically. We write (I1,3c) as
(VI,1a) B(m) = X1 f(m, ) + F(m, k)

. 1
with f(m,r) = m

and F(m, k) = X2y f(m,7)

. 1 w 1 1 oo dr 1
Rough estimate: (VI,1b) F(m, k) =~ — Xk m ® ﬁfk = = ,
The precision p digits, i.e. F(m, k) < € = 107P (maximum error ) requires k > mlzg = 1;2

for p = 100. No computer can add that many terms in YX21 f(m, r). But we can fix this
problem by using  (V,2a) F(m, k) = Z$°=1b(r)%,
where the coefficients b(r) are defined by the recurrence

(V,2¢) b(r) = %((%)m —Yizib(r —H(=1)/ (j i 1)) with b(1) = mi

Note that b(1)/k is the rough estimate (VI,1b).
Withc(m) =y + m(l — ,B(m)), the algorithm is complete.

Annotations:
The formula (V,2a) F(m, k) = Y72, b(r) % is, strictly speaking, not correct because the

series is divergent: d(r) = b(r)% — +00. But as long as |d(r)] is decreasing, d(r)

approximately indicates the deviation from f(m) in (VI,1a). For example, if the deviation is
to be smaller than 1071%°, k = 100 can be used: d(72) = 3 -1071%0, 4(73) = 2- 107101,
for m = 3. In this case, F (m, k) begins:

F( k)—110‘2+ ! 107 + L 107° ! 1078
)=y 27 243 243

A numerical problem remains. Let d be the difference of k; = e™?¢(™) — YZ—: and the next

1

24k,

ko, see (1,3a), is very small compared with d so that we can neglect it. But a numerical error
mn—c(m) _ M+2,

ginc(m)inducesanerrordink, =e —m

S5 = emn—c(m) _ emn—c(m)—e a Skl.

of

integer, i.e. d = min(k, — |k,|,1 + k1] — k;). Normally (always?), the uncertainty

This requires § < d or k; < g. For example, e = 1071%° d = 0.1 = k; < 10%°.
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