%I #26 Sep 08 2020 02:13:36
%S 1,2,7,19,3,73,9,71,91,13,11,31,37,33,17,39,77,331,79,719,97,191,93,
%T 733,113,131,137,337,397,193,739,773,311,313,139,7191,99,197,199,1131,
%U 317,971,911,373,379,7193,797,1911,3113,173,977,3311,3131,1311,3137,3313,179,7197,1919,919,1137
%N Lexicographically earliest sequence of distinct positive integers such that the concatenation of any three successive digits forms a prime.
%H Jean-Marc Falcoz, <a href="/A337614/b337614.txt">Table of n, a(n) for n = 1..1500</a>
%e The first terms 1, 2, 7, 19, 3, 73, 9, ... form (when 3 successive digits are concatenated) the prime numbers 127, 271, 719, 193, 937, 373, 739, ...
%Y Cf. A337613 (same idea, 2 successive digits), A334050 (4 digits).
%K base,nonn
%O 1,2
%A _Eric Angelini_ and _Jean-Marc Falcoz_, Sep 05 2020