Rodolfo Kurchan's Square Puzzle \#578

Complete list of maximal solutions for up to 11 squares, computed by Hermann Jurksch and Hugo Pfoertner. Illustrations by Rainer Rosenthal. (Autumn 2020)

Introduction

In 1997 R.KJ. wrote (https://www.puzzlefun.online/puzzle-fun-18):
Using N different squares (from 1 x 1 to NxN) form the largest quantity of 1×1 squares.
577) The largest squares contains the smaller ones.
578) The smaller squares can be placed anywhere.

My best solutions for 577) are:
$1 \mathrm{x} 1=1,2 \times 2=1,3 \times 3=2,4 \times 4=4,5 \times 5=8,6 \times 6=10,7 \times 7=15$.

My best solutions for 578) are:
$1 \mathrm{x} 1=1,2 \times 2=1,3 \times 3=4,4 \times 4=7,5 \times 5=12,6 \times 6=17,7 \times 7=23$.

In 2020 R. K. added to the Online Encyclopedia of Integer sequences (https://oeis.org/OEIS):

A336659: maximal number of 1x1 cells for N squares (puzzle \#577) A336660: maximal number of 1x1 cells for N squares (puzzle \#578)
(We write "cell" instead of "square" to avoid confusion.)

New results

In the following we restrict ourselves to puzzle \#578.
Sequence A336660 has entries for $N=1$ to 11:

$$
1,1,4,7,12,17,24,31,42,50,65
$$

Sequence A337515 gives the number of best configurations:
$1,1,1,4,1,2,1,8,4,21,29$
Here ist the list of illustrations for the best configurations.
(See the catalogue of coordinates https://oeis.org/A337515/a337515.txt)

Some configurations have the same list of larger squares, but differ only in the position of the smallest square. We call them "1-siblings" and show only one of them in full. The possible locations are marked with a little cross (+):

6 squares 17 cells
V1: unique

8 squares 31 cells
V1: unique
8 squares 31 cells
V1: unique

8 squares 31 cells
v4: 2 1-siblings

6 squares 17 cells
V2: unique

7 squares 24 cells
V1: unique

8 squares 31 cells V 2 : unique

8 squares 31 cells
V5: unique

8 squares 31 cells V3: 2 1-siblings

Rainer Rosenthal, Überlingen 2020-10-04, with many thanks to Hugo Pfoertner.

