login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} n^(n-k) * binomial(2*k,k) * binomial(2*n+1,2*k).
3

%I #13 Aug 31 2020 04:24:32

%S 1,7,74,1175,24310,610897,17920356,598099077,22305598630,917158184525,

%T 41148369048876,1997720107411613,104241356841544636,

%U 5813083330109559415,344783011379207286920,21660231928192698604995,1436143861200146476260102,100179915387243084700279349

%N a(n) = Sum_{k=0..n} n^(n-k) * binomial(2*k,k) * binomial(2*n+1,2*k).

%F From _Vaclav Kotesovec_, Aug 31 2020: (Start)

%F a(n) ~ (2 + sqrt(n))^(2*n + 3/2) / (2*n*sqrt(2*Pi)).

%F a(n) ~ exp(4*sqrt(n) - 4) * n^(n - 1/4) / sqrt(8*Pi) * (1 + 25/(3*sqrt(n)) + 427/(18*n)). (End)

%t a[n_] := Sum[If[n == 0, Boole[n == k], n^(n - k)] * Binomial[2*k, k] * Binomial[2*n + 1, 2*k], {k, 0, n}]; Array[a, 18, 0] (* _Amiram Eldar_, Aug 25 2020 *)

%o (PARI) {a(n) = sum(k=0, n, n^(n-k)*binomial(2*k, k)*binomial(2*n+1, 2*k))}

%Y Main diagonal of A337369.

%Y Cf. A337388.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Aug 25 2020