%I #11 Aug 25 2020 10:10:39
%S 2,9,12,28,18,60,24,75,52,90,36,196,42,120,120,186,54,273,60,294,160,
%T 180,72,540,124,210,200,392,90,648,96,441,240,270,240,910,114,300,280,
%U 810,126,864,132,588,546,360,144,1364,228,651,360,686,162,1080,360,1080,400,450,180,2184
%N Sum of the coordinates of all pairs of divisors of n, (d1,d2), such that d1 <= d2.
%C 2*a(n) is the sum of the perimeters of all distinct rectangles that can be made whose side lengths are divisors of n.
%C Every divisor of n occurs tau(n) + 1 times in the coordinates of divisors of n. - _David A. Corneth_, Aug 25 2020
%H David A. Corneth, <a href="/A337360/b337360.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = Sum_{d1|n, d2|n, d1<=d2} (d1+d2).
%F a(n) = sigma(n) * (tau(n) + 1). - _David A. Corneth_, Aug 25 2020
%e a(3) = 12; The divisors of 3 are {1,3}. The divisor pairs, (d1,d2), where d1 <= d2 are (1,1), (1,3) and (3,3). The sum of all the coordinates is then 1+1+1+3+3+3 = 12. So a(3) = 12.
%e a(4) = 28; The divisors of 4 are {1,2,4}. The divisor pairs, (d1,d2), where d1 <= d2 are (1,1), (1,2), (1,4), (2,2), (2,4) and (4,4). The sum of all the coordinates is then 1+1+1+2+1+4+2+2+2+4+4+4 = 28. So a(4) = 28.
%e a(5) = 18; The divisors of 5 are {1,5}. The divisor pairs, (d1,d2), where d1 <= d2 are (1,1), (1,5) and (5,5). The sum of all the coordinates is then 1+1+1+5+5+5 = 18. So a(5) = 18.
%e a(6) = 60; The divisors of 6 are {1,2,3,6}. The divisor pairs, (d1,d2), where d1 <= d2 are (1,1), (1,2), (1,3), (1,6), (2,2), (2,3), (2,6), (3,3), (3,6), (6,6). The sum of all the coordinates is then 1+1+1+2+1+3+1+6+2+2+2+3+2+6+3+3+3+6+6+6 = 60. So a(6) = 60.
%t Table[Sum[Sum[(i + k) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k}], {k, n}], {n, 80}]
%o (PARI) a(n) = sigma(n) * (numdiv(n)+1) \\ _David A. Corneth_, Aug 25 2020
%Y Cf. A000005, A000203.
%K nonn,easy
%O 1,1
%A _Wesley Ivan Hurt_, Aug 24 2020