login
a(n) gives the square of the base the nonrectangular triangle with positive sides (sqrt(x(n)_j), sqrt(y(n)_j), sqrt(a(n))), 1 <= x(n)_j <= y(n)_j <= a(n), with positive integers x(n)_j, y(n)_j and areas A(n)_j, for j = 1, 2, ..., A336889(n), such that the quartets (x(n)_j, y(n)_j, a(n), A(n)_j) are primitive.
3

%I #12 May 08 2021 08:45:51

%S 5,8,9,10,13,16,17,18,20,25,26,29,32,34,36,37,40,41,45,48,49,50

%N a(n) gives the square of the base the nonrectangular triangle with positive sides (sqrt(x(n)_j), sqrt(y(n)_j), sqrt(a(n))), 1 <= x(n)_j <= y(n)_j <= a(n), with positive integers x(n)_j, y(n)_j and areas A(n)_j, for j = 1, 2, ..., A336889(n), such that the quartets (x(n)_j, y(n)_j, a(n), A(n)_j) are primitive.

%C For the positive integer leg pairs (x(n)_j, y(n)_j) see row n of A336888, for n >= 1: x(n)_j = A336888(n, 2*j-1) and y(n)_j = A336888(n, 2*j), for j = 1, 2, ..., A336889(n).

%C The areas A(n_j) are given by A337216(n, j).

%Y Cf. A336888, A336889, A337216.

%K nonn,more

%O 1,1

%A _Wolfdieter Lang_, Aug 19 2020