login
E.g.f.: 1 / (1 + x^3/3 + log(1 - x)).
1

%I #6 Aug 13 2020 22:43:10

%S 1,1,3,12,72,534,4818,50532,606408,8182656,122712912,2024328096,

%T 36432644400,710346495312,14915647605168,335567743462944,

%U 8052843408926976,205328108580310656,5543345188496499840,157970863597032124416,4738694884696030305024

%N E.g.f.: 1 / (1 + x^3/3 + log(1 - x)).

%F a(0) = a(1) = 1; a(n) = n * (a(n-1) + (n-1) * a(n-2) / 2) + Sum_{k=4..n} binomial(n,k) * (k-1)! * a(n-k).

%t nmax = 20; CoefficientList[Series[1/(1 + x^3/3 + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!

%t a[0] = a[1] = 1; a[n_] := a[n] = n (a[n - 1] + (n - 1) a[n - 2]/2) + Sum[Binomial[n, k] (k - 1)! a[n - k], {k, 4, n}]; Table[a[n], {n, 0, 20}]

%Y Cf. A000090, A007840, A226226, A337060.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Aug 13 2020