Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #8 Aug 11 2020 10:38:28
%S 0,1,0,2,1,1,0,2,2,2,1,2,2,1,1,3,2,3,1,3,0,2,1,2,3,3,1,2,2,2,0,4,1,3,
%T 1,4,3,2,2,3,3,1,2,3,3,2,1,3,4,4,2,4,3,2,2,2,1,3,2,3,3,1,2,5,3,2,1,4,
%U 1,2,2,4,3,4,3,3,1,3,1,4,4,4,3,2,3,3,2,3,3,4,2,3,0,2,2,4,4,5,3,5,2,3,2,4,1
%N a(n) = A329697(sigma(n)), where A329697 is totally additive with a(2) = 0 and a(p) = 1 + a(p-1) for odd primes.
%H Antti Karttunen, <a href="/A336928/b336928.txt">Table of n, a(n) for n = 1..65537</a>
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F Additive with a(p^e) = A329697(sigma(p^e)) = A329697(1+ p + p^2 + ... + p^e).
%F a(n) = A329697(A000203(n)).
%o (PARI)
%o A329697(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A329697(f[k,1]-1)))); };
%o A336928(n) = A329697(sigma(n));
%Y Cf. A000203, A329697.
%Y Cf. also A336469, A336694, A336927, A336929.
%K nonn
%O 1,4
%A _Antti Karttunen_, Aug 11 2020