The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A336745 Numbers m that divide the product phi(m) * sigma(m) * tau(m), where phi is the Euler totient function (A000010), sigma is the sum of divisors function (A000203) and tau is the number of divisors function (A000005). 3
 1, 2, 6, 8, 9, 12, 18, 24, 28, 32, 36, 40, 54, 72, 80, 84, 96, 108, 117, 120, 128, 135, 144, 162, 196, 200, 216, 224, 234, 240, 243, 252, 270, 288, 324, 360, 384, 400, 405, 448, 468, 486, 496, 512, 540, 576, 588, 600, 625, 640, 648, 672, 675, 720, 756, 768, 775, 810, 819 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS If s and t are terms with gcd(s, t) = 1, then s*t is another term as phi, sigma and tau are multiplicative functions. The only prime term is 2 because prime p must divide 2*(p-1)*(p+1) to be a term. LINKS David A. Corneth, Table of n, a(n) for n = 1..10000 EXAMPLE For 24, phi(24) = 8, sigma(24) = 60 and tau(24) = 8, then 8*60*8 / 24 = 160, hence 24 is a term. MAPLE with(numtheory): filter:= m -> irem(tau(m)*phi(m)*sigma(m), m) =0: select(filter, [\$1..850]); MATHEMATICA Select[Range[1000], Divisible[Times @@ DivisorSigma[{0, 1}, #] * EulerPhi[#], #] &] (* Amiram Eldar, Aug 02 2020 *) PROG (PARI) isok(m) = !(eulerphi(m)*sigma(m)*numdiv(m) % m); \\ Michel Marcus, Aug 05 2020 CROSSREFS Cf. A000005, A000010, A000203, A062355. Subsequences: A000396 (perfect numbers), A005820 (tri-perfect), A027687 (4-perfect), A046060 (5-multiperfect), A046061 (6-multiperfect), A007691 (multiply-perfect numbers), A336715 (m divides phi(m)*tau(m)), A004171, A005010. Sequence in context: A288428 A050675 A262981 * A034591 A047278 A242204 Adjacent sequences:  A336742 A336743 A336744 * A336746 A336747 A336748 KEYWORD nonn AUTHOR Bernard Schott, Aug 02 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 02:47 EDT 2022. Contains 356122 sequences. (Running on oeis4.)