login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (-1)^n * Sum_{k=0..n} (-2)^k * binomial(n,k) * binomial(n^2+k+1,n)/(n^2+k+1).
4

%I #45 Aug 08 2023 07:58:02

%S 1,1,4,34,484,9946,270314,9189776,376223992,18046839982,993655820512,

%T 61803730636506,4287521490060780,328324625277864008,

%U 27514775912958768464,2505202120094546731584,246288599061132553970160,26004541628560046316399382,2935176211106696031739535696

%N a(n) = (-1)^n * Sum_{k=0..n} (-2)^k * binomial(n,k) * binomial(n^2+k+1,n)/(n^2+k+1).

%C Number of Sylvester classes of n-packed words of degree n.

%H Seiichi Manyama, <a href="/A336495/b336495.txt">Table of n, a(n) for n = 0..339</a>

%F a(n) = ( (-1)^n / (n^2+1) ) * Sum_{k=0..n} (-2)^(n-k) * binomial(n^2+1,k) * binomial((n+1)*n-k,n-k).

%F a(n) = (-1)^n*binomial(1 + n^2, n)*hypergeom[-n, 1 + n^2, 2 + (n - 1)*n, 2] / (1 + n^2). - _Peter Luschny_, Jul 26 2020

%F a(n) ~ exp(n + 3/2) * n^(n - 5/2) / sqrt(2*Pi). - _Vaclav Kotesovec_, Jul 31 2021

%F a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial((n+1)*n-k,n-1-k) for n > 0. - _Seiichi Manyama_, Aug 08 2023

%t a[n_] := ((-1)^n Binomial[1 + n^2, n] Hypergeometric2F1[-n, 1 + n^2, 2 + (n - 1) n, 2]) / (1 + n^2); Array[a, 19, 0] (* _Peter Luschny_, Jul 26 2020 *)

%o (PARI) a(n) = (-1)^n*sum(k=0, n, (-2)^k*binomial(n, k)*binomial(n^2+k+1, n)/(n^2+k+1));

%o (PARI) a(n) = (-1)^n*sum(k=0, n, (-2)^(n-k)*binomial(n^2+1, k)*binomial((n+1)*n-k, n-k))/(n^2+1);

%Y Main diagonal of A336573.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Jul 26 2020