Fibonacci-Like Sequences and their Cassini Constants, Multiplication and Factorisation.

David Friend

Foreword

I graduated in Mathematics long ago, but worked as a Systems Programmer so I don't claim to be a mathematician. In an idle moment I pondered on a proof of the convergence of the Fibonacci sequence, and realised it applies to any Fibonacci-like sequence and reveals a constant for the sequence. Then I followed a trail of discovery, more or less as detailed in this document.

This document uses little more than High School mathematics, and is liberally illustrated with examples. I may not have used the received terminology, and have taken the name of Cassini for the constant since it plugs straight into Cassini's Identity. My notation uses (r, s) for a sequence in terms of its root values rather than its starting values. The final conjectures, while easy to understand, may be challenging to prove! Or maybe they have been?

Everything in this document I have discovered independently, but subsequent searches show that many of the results are already documented in one form or another. In particular the comments in OEIS ${ }^{\circledR}$ Sequence A082970 by Wolfdieter Lang precede many of mine. Also by T.D.Noe , Shreevatsa R , Matthew Staller and Robert Israel ; and a reference to a paper by Alfred Brousseau in 1963, who suggests ordering Fibonacci-like sequences in exactly the order I chose. Nevertheless, I hope to have made some contribution.

Some supporting material, perl programs and output, can be found at:
https://www.dropbox.com/sh/jwju9byfibiu41e/AACIhxJIAcc9vhd7vnLnX1nXa?dl=0
David Friend
September 2020

Summary

A simple proof of the convergence of a general Fibonacci-like sequence leads to the Cassini constant, K, which we then use to generalise some identities. Extending such an integer sequence backwards reveals a unique origin about which the sequence can be reflected, giving two complementary sequences.

These give us root values which define how a sequence is derived from the Fibonacci sequence. The asymptotic ratio of the terms of a general sequence to the Fibonacci sequence gives skewed-roots of the Cassini constant. We use these to create a formula for the $\mathbf{n}^{\text {th }}$ term of any Fibonacci-like sequence.

Further derivations, using the root values of one sequence as multipliers in a simple linear combination of another sequence, is a process which has direct parallels with multiplication, with the Fibonacci sequence acting as an identity. The corresponding results for sequence multiplication are listed and proved.

In particular: the Cassini constant of the product of sequences is the product of the Cassini constants of the sequences. Further, the product of two complementary sequences is a simple multiple of the Fibonacci sequence.

We show how to find the roots of the product of two sequences.
For sequence factorisation we make some number theoretic conjectures about Cassini constants, based on observations and strong empirical evidence. The foremost of these are that a prime Cassini constant results from just one pair of complementary prime sequences, and non-prime Cassini constants have prime factors which are themselves all Cassini constants.

More conjectures are made and we show how the factors of Cassini constants can be used to factorise a sequence whose roots are known, or to determine how many, and which, sequences give rise to a given Cassini constant, K. This leads to the integer solutions r and s of the equation: $\left(r^{2}+3 r s+s^{2}\right)=K$.

Finally, we introduce OEIS ${ }^{\circledR}$ sequence A336403 and show it is closed under multiplication, filling a gap in sequences related to the Cassini constants.

Fibonacci-Like Sequences

A Fibonacci-like sequence is one whose terms are created by adding the two previous terms, i.e. $\mathrm{S}(\mathrm{i}+2)=\mathrm{S}(\mathrm{i}+1)+\mathrm{S}(\mathrm{i})$, and is defined by two starting values \mathbf{a}, \mathbf{b} conventionally given as $S(0)$ and $S(1)$. For example:
$a=0, b=1$ gives: $0,1,1,2,3,5,8 \ldots$ the Fibonacci Sequence F;
$a=2, b=1$ gives: $2,1,3,4,7,11,18$... the Lucas Sequence L;
$a=4, b=5$ gives: $4,5,9,14,23,37,60 \ldots$ a general Fibonacci-like sequence S.
Starting with terms $S(i)=u, S(i+1)=v$, we get $S(i+2)=(u+v), S(i+3)=(u+2 v)$, $S(i+4)=(2 u+3 v)$, and it becomes obvious that the coefficients are consecutive terms from the Fibonacci sequence itself. The general term can be written as $\mathbf{S}(\mathbf{i}+\mathbf{j})=\mathrm{F}(\mathrm{j}-1) \mathrm{u}+\mathrm{F}(\mathrm{j}) \mathrm{v}=\mathbf{F}(\mathbf{j} \mathbf{- 1}) \mathbf{S}(\mathbf{i})+\mathbf{F}(\mathbf{j}) \mathbf{S}(\mathbf{i}+\mathbf{1})$ or, by replacing i with $\mathrm{i}-1$, more neatly as: $\mathrm{S}(\mathrm{i}+\mathrm{j}-1)=\mathrm{F}(\mathrm{j}-1) \mathrm{S}(\mathrm{i}-1)+\mathrm{F}(\mathrm{j}) \mathrm{S}(\mathrm{i})$ or $\mathbf{S}(\mathbf{i}+\mathbf{j}-\mathbf{1})=\mathbf{F}(\mathbf{i} \mathbf{- 1}) \mathbf{S}(\mathbf{j}-\mathbf{1})+\mathbf{F}(\mathbf{i}) \mathbf{S}(\mathbf{j})$.

Note that in this expression the index origin of the Fibonacci Sequence must be fixed at $F(0)=0$ to get the required coefficients. References to the Fibonacci and Lucas Sequences will always use the time-honoured origins $F(0)=0$ and $L(0)=2$.

The general sequence S can, for the moment, have a more flexible origin.
For example, if $4=S(1)$ and $5=S(2)$ in the general example above, we get:

$$
S(7)=S(2+5)=F(4) S(2)+F(5) S(3)=3 \times 5+5 \times 9=15+45=60
$$

or $S(7)=S(3+5-1)=F(2) S(4)+F(3) S(5)=1 \times 14+2 \times 23=14+46=60$.
If we know the values of any two terms $S(i)$ and $S(i+j)$ and their separation ' j ', the expression above will give us $S(i+1)$ and the sequence is fully determined; but in general any two given separated values may not define an integer sequence, for example $0, x, y, 3$ would give $x=y=3 / 2$.

Later, we shall be interested in sequences derived from an alternate pair r,,s. Here the intermediate term is an integer so generates an integer sequence.

Simple Identity

For any Fibonacci-like sequence S (including F and L):

$$
S(n+r)+(-1)^{r} S(n-r)=L(r) S(n)
$$

where L is the Lucas Sequence with $L(0)=2$ and $L(1)=1$.
Proof:
For $r=0: S(n)+S(n)=2 S(n)=L(0) S(n)$
For $r=1$: $S(n+1)-S(n-1)=S(n)=L(1) S(n)$
For $r+2: S(n+(r+2))+(-1)^{(r+2)} S(n-(r+2))$

$$
\begin{aligned}
& =S(n+(r+1))+S(n+r)+(-1)^{r}(S(n-r)-S(n-(r+1))) \\
& =S(n+r)+(-1)^{r} S(n-r)+S(n+(r+1))+(-1)^{(r+1)} S(n-(r+1)) \\
& =L(r) S(n)+L(r+1) S(n)=L(r+2) S(n)[Q E D]
\end{aligned}
$$

For example: $S(n+2)+S(n-2)=3 S(n)$, where $3=L(2)$.
When $r=n$ and S is the Fibonacci sequence $F: F(2 n)=L(n) F(n)$.
When $r=n$ and S is the Lucas sequence $L: L(2 n)=(L(n))^{2} \pm 2$ (as n is odd or even).

Convergence

For any Fibonacci-like sequence S, the ratio $S(i+1) / S(i)$ converges to the Golden Ratio $\Phi \approx 1.618034 \ldots$, being the positive solution of the equation $x^{2}=x+1$.

The equation $\Phi^{2}=\Phi+1$ can also be written as $\Phi=1+(1 / \Phi)$.
Let $u, v,(u+v),(u+2 v)$ be any four consecutive terms in the sequence $(\neq 0)$.
If $(v / u)<\Phi$ then $(u / v)>(1 / \Phi)$, so that $(u+v) / v=(u / v)+1>(1 / \Phi)+1=\Phi$; and vice versa. l.e. the ratio of consecutive terms alternates either side of Φ.

To show convergence we look at the difference between consecutive ratios.
The first difference is $(u+v) / v-v / u=\left(u(u+v)-v^{2}\right) / u v$.
The next difference is $(u+2 v) /(u+v)-(u+v) / v=\left(v(u+2 v)-(u+v)^{2}\right) / v(u+v)$ $=\left(u v+2 v^{2}-u^{2}-2 u v-v^{2}\right) / v(u+v)=\left(v^{2}-u^{2}-u v\right) / v(u+v)=\left(\left(v^{2}-u(u+v)\right) / v(u+v)\right.$.

From which we see that the numerator is constant with alternating sign, but the denominator increases as the sequence progresses, proving convergence.

The Cassini Constant

We can express the above constant in terms of the starting values \mathbf{a}, \mathbf{b} of S as $\left(\mathbf{a}(\mathbf{a}+\mathbf{b})-\mathbf{b}^{\mathbf{2}}\right)$, and call it the Cassini constant: K, K_{s} or $K_{a, b}$.
$a=0, b=1$ gives $K_{F}=K_{0,1}=-1$ for the Fibonacci Sequence (but $K_{1,0}=+1$),
$a=2, b=1$ gives $K_{L}=K_{2,1}=+5$ for the Lucas Sequence,
$a=4, b=5$ gives $K_{s}=K_{4,5}=11$ for the general example above.
If $S(0)=a$ and $S(1)=b$ then $K_{s}=K_{a, b}=S(0) S(2)-S(1)^{2}$ and we showed above that, for any $n: \mathbf{S}(\mathbf{n} \mathbf{- 1}) \mathbf{S}(\mathbf{n + 1}) \mathbf{- S (n)} \mathbf{2}^{\mathbf{2}}=(\mathbf{- 1})^{\mathrm{n+1}} \mathbf{K}_{s}=(\mathbf{- 1})^{\mathrm{n}}\left(-\mathbf{K}_{s}\right)$. This is a generalisation of Cassini's Identity for the Fibonacci sequence, where $K_{F}=-1$. Later we shall fix the index origin and generalise some other identities.

In the above, a, b can be any real numbers. If $(b / a)=\Phi$, then every pair has the same ratio Φ, and $\mathbf{K}=\mathbf{0}$. Going backwards down this sequence the terms get smaller and approach 0, but always remain positive.

From now on, we shall be dealing only with integer sequences.

Scalar Multiples

If any two consecutive terms of a sequence (or indeed any alternate pair) have a common factor λ, then every term in the sequence has the same factor λ. Then define T such that $T(i)=S(i) / \lambda$. We say that S is a scalar multiple of T and we write $\boldsymbol{S}=\boldsymbol{\lambda} \boldsymbol{T}$. (When using an index we ignore the semantic ambiguity of " $\lambda T(n)$ ", since the $n^{\text {th }}$ term of λT has the value $\lambda \times T(n)$ by definition).

Clearly, the Cassini constant is $\mathrm{K}_{\boldsymbol{\lambda}}=\lambda^{2} \mathrm{~K}_{\mathrm{T}}$.
Since every integer divides zero, any sequence with a zero term has the next term as a common factor, λ say, and the sequence contains $\ldots,-\lambda, \lambda, 0, \lambda, \lambda, \ldots$ In this case, S is a scalar multiple of the Fibonacci sequence, i.e. $\mathbf{S}=\boldsymbol{\lambda} \mathbf{F}$.

Backward Extensions and Negative Indices and Terms

Any Fibonacci-like sequence can be extended backwards into negative indices using: $S(i-1)=S(i+1)-S(i)$. Any integer sequence extending backwards will include negative terms: positive terms become smaller until $S(i+1)<(S(i+2)) / 2$, whence $S(i)>S(i+1)$. Extending back beyond this point makes $S(i-1)$ negative, and then gives alternating negative and positive terms.
E.g. ... $-8,5,-3,2,-1,1,0,1,1,2,3,5$... for the Fibonacci sequence, and ... $-11,7,-4,3,-1,2,1,3,4,7,11,18 \ldots$ for the Lucas sequence, and $. . .-7,5,-2,3,1,4,5,9,14,23 \ldots$ for the sequence defined by $a=4, b=5$. Apart from its sign, the Cassini constant can be calculated from any two consecutive values anywhere in an extended sequence.

Sequence/Index Origin

Since a sequence is endless in both directions we need to define the origin.
If a sequence contains a zero value it is either the Fibonacci sequence F or a scalar multiple λF, so we use the zero value as the origin. The starting values are $\lambda F(0)=0, \lambda F(1)=\lambda$, and the Cassini constant is negative: $K_{0, \lambda}=-\lambda^{2}$.

From now on we refer to F or λF specifically, and use other symbols such as S for sequences with no zero value or which have a different index origin.

For the general sequence S we choose the origin $S(0)$ so that $S(-1)$ is the "rightmost" negative term. This gives the following properties:
$S(-1)$ and $S(1)$ are the only alternate pair with opposite signs;
$S(0)$ and $S(1)$ are the first consecutive pair of positive numbers; $S(0)$ and $S(1)$ are the only descending positive pair, i.e. $S(0)>S(1)$;
$S(-1)$ and $S(1)$ have the smallest sum of absolute values of any alternate pair; for all $i \geq 0$ we have $S(i)>0$; and for all $i<0$ we have $S(2 i)>0$ and $S(2 i+1)<0$.

Let ${ }^{a} S_{b}$ denote a sequence in term of its starting values $S(0)=a$ and $S(1)=b$.
Since $a>b$, we have $a(a+b)>2 b^{2}$, so $K_{s}>b^{2}$ and is always positive.
To show the origin of a sequence, we now show it in square brackets: e.g. ... $-8,5,-3,2,-1,1,[0], 1,1,2,3,5 \ldots$ for the Fibonacci sequence F, and ... $-11,7,-4,3,-1,[2], 1,3,4,7,11 \ldots$ for the Lucas sequence L, which still has the conventional origin and index so we can write $\mathbf{L}={ }^{2} \mathbf{S}_{1}$, and ... $-19,12,-7,5,-2,[3], 1,4,5,9,14 \ldots$ for ${ }^{3} S_{1}$, now starting with $a=3, b=1$.

Generalising Some Identities

Having defined an index origin above, we can now generalise some identities. We have proved the first, but the rest are stated without proof.

Cassini's Identity: $F(n-1) F(n+1)-F(n)^{2}=(-1)^{n}$
becomes $\quad S(n-1) S(n+1)-S(n)^{2}=(-1)^{n}\left(-K_{S}\right)$
Catalan's Identity: $F(n)^{2}-F(n-r) F(n+r)=(-1)^{n-r} F(r)^{2}$
becomes

$$
S(n)^{2}-S(n-r) S(n+r)=(-1)^{n-r} F(r)^{2}\left(-K_{s}\right)
$$

Vajda's Identity: $\quad \mathrm{F}(\mathrm{n}+\mathrm{i}) \mathrm{F}(\mathrm{n}+\mathrm{j})-\mathrm{F}(\mathrm{n}) \mathrm{F}(\mathrm{n}+\mathrm{i}+\mathrm{j})=(-1)^{\mathrm{n}} \mathrm{F}(\mathrm{i}) \mathrm{F}(\mathrm{j})$
becomes $\quad S(n+i) S(n+j)-S(n) S(n+i+j)=(-1)^{n} F(i) F(j)(-K s)$
d'Ocagne's Identity: $F(m) F(n+1)-F(n) F(m+1)=(-1)^{n} F(m-n)$
becomes

$$
S(m) S(n+1)-S(n) S(m+1)=(-1)^{n} F(m-n)\left(-K_{s}\right)
$$

We can make these pairs homologous by appending the term " $\left(-\mathrm{K}_{\mathrm{F}}\right)$ " to the right-hand side of the base identities, since $\left(-K_{F}\right)=1$.

Complementary Sequences

Simple observation shows that the example sequence $S={ }^{3} S_{1}$

$$
S=\ldots 12,-7,5,-2,[3], 1,4,5,9 \ldots
$$

can be reversed, with appropriate sign changes, to give $R={ }^{3} S_{2}$ $R=. . .9,-5,4,-1,[3], 2,5,7,12 \ldots$

For any sequence $\mathbf{S}={ }^{\mathbf{a}} \mathbf{S}_{\mathrm{b}}(\mathrm{S}(\mathrm{i}) \neq 0)$ we define the complementary sequence \mathbf{S} ' as follows: for all i: $\mathbf{S}^{\prime}(\mathbf{i})=(\mathbf{- 1})^{\mathbf{i} \mathbf{S}}(\mathbf{- i})$, which has the effect of reversing/reflecting \mathbf{S}
about $S(0)$, with the appropriate sign changes. The complement of S^{\prime} is S again, i.e. $\left(S^{\prime}\right)^{\prime}=S$. The complement of a scalar multiple is the scalar multiple of the complement, i.e. $(\lambda S)^{\prime}=\lambda\left(S^{\prime}\right)$. In general, the complement of ${ }^{\mathrm{a}} \mathbf{S}_{\mathrm{b}}$ is ${ }^{\mathrm{a}} \mathrm{S}_{\mathrm{a}-\mathrm{b}}$ and vice versa. Therefore the complement of the Lucas sequence is itself: $\mathrm{L}^{\prime}={ }^{2} \mathrm{~S}_{1}=\mathrm{L}$.
$S^{\prime}(0)=S(0), S^{\prime}(-1)=-S(1)<0$ and $S^{\prime}(1)=-S(-1)>0$, so the index origin is unchanged. Substituting S^{\prime} for S and $\mathrm{n}=0$ in Cassini's identity, sign changes cancel out and $K_{s^{\prime}}=\mathrm{K}_{\mathrm{S}}$. I.e. complementary sequences have the same Cassini constant.

Substituting $(-1)^{\prime} \mathrm{S}(-\mathrm{i})$ in the Simple Identity with $\mathrm{n}=0$ we get $\mathrm{S}(\mathrm{i})+\mathrm{S}^{\prime}(\mathrm{i})=\mathrm{S}(0) \mathrm{L}(\mathrm{i})$ or $\mathbf{S + S ^ { \prime }}=\mathbf{S}(\mathbf{0}) \mathrm{L}$, the complements identity: the term-by-term sum of a sequence plus its complement is the $S(0)$-times scalar multiple of the Lucas sequence.

If $S^{\prime}(1)=S(1)=\lambda$ then $S^{\prime}=S=\lambda L$, otherwise we nominate the smaller of $S(1)$ and $S^{\prime}(1)$ as the Primary sequence and the larger as the Secondary sequence. With starting values [a],b the Primary sequence has $\mathrm{b}<(\mathrm{a}-\mathrm{b})$ i.e. $\mathrm{b}<\mathrm{a} / 2$.

Root Terms and Values

A sequence S can be defined by any alternate pair of terms. We choose the only alternate pair with opposite signs, $S(-1)<0$ and $S(1)>0$, as root terms. We define root values: $\mathbf{r}=\mathbf{- S}(\mathbf{- 1})$ and $\mathbf{s}=\mathbf{S}(\mathbf{1})$, with r and s both positive, and $r+s=S(0)$. The complementary sequence has root values s and r.
Sometimes we simply refer to the roots, where the context is unambiguous.
Cassini's identity with $n=0$ gives K in terms of r and s :
the Cassini constant $K=(r+s)^{2}+r s=r^{2}+3 r s+s^{2}$.
We use the notation ${ }_{r} \mathbf{S}_{s}$ or just (\mathbf{r}, \mathbf{s}) for the sequence and ${ }_{r} \mathbf{K}_{\mathbf{s}}$ for the constant.
In terms of starting values a, b we have $a=S(0)=r+s$ and $b=S(1)=s, s o$:
${ }_{r} \mathbf{S}_{s}={ }^{r+s} \mathbf{S}_{s}$ with complement ${ }_{s} \mathbf{S}_{\mathrm{r}}={ }^{r+5} \mathbf{S}_{\mathrm{r}}$ and ${ }_{\mathrm{r}} \mathbf{K}_{\mathrm{s}}={ }_{\mathrm{s}} \mathbf{K}_{\mathrm{r}}=\mathbf{K}_{\mathrm{r}+\mathrm{s}, \mathrm{s}}$.
Two numbers with no common factor are said to be relatively prime.
Clearly, root values are relatively prime if and only if the starting values are.

Complements and Root Terms of the Anomalous Fibonacci Sequence

The Fibonacci sequence clearly reflects about its zero value, which makes the natural origin $\mathrm{F}(0)=0$; but the negative values fall on even negative indices. For the complement F^{\prime} to be F the definition would have to be $F^{\prime}(\mathbf{i})=(\mathbf{- 1})^{i+1} \mathrm{~F}(-\mathbf{i})$; but then $F(i)+F^{\prime}(i)=2 F(i)=L(0) F(i)$ and not $F(0) L(i)$, so the complements identity fails.

Using $F(-1)=1$ and $F(1)=1$ as root terms gives root values $-1,1$ and makes $K_{F}=-1$ negative, as we have already seen in the identities above. Further, since $F(-1)$
is positive, the index differs from our standard definition of origin described earlier, and F fails many of the properties associated with it.

The problems seem to stem from the zero value, which is neither positive nor negative. Consider a general sequence S with the same values as the Fibonacci sequence. If we choose the origin such that $S(-1)$ and $S(1)$ are negative and non-negative we get $S={ }_{1} S_{0}: \ldots,-1,[1], 0, \ldots$; and if we base the origin on $S(-1)$ and $S(1)$ being non-positive and positive we get $S^{\prime}={ }_{0} S_{1}: \ldots, 0,[1], 1, \ldots$.
These two sequences are complementary with the normal definition.
Note that $0=S(1)=F(0)=S^{\prime}(-1)$ and in general $S(i+1)=F(i)=S^{\prime}(i-1)$. The complements identity applies, so $S(i)+S^{\prime}(i)=S(0) L(i)=L(i)$, and we have come
 sum of alternate terms of the Fibonacci sequence gives the Lucas sequence.

The index origin $\mathrm{F}(0)=0$ is required for the identities listed earlier, but in much of what follows we use the sequence $(1,0)$ or its complement $(0,1)$ which have the same values, and non-negative roots so that $K_{1,0}=K_{0,1}=+1$.

The On-line Encyclopedia of Integer Sequences ${ }^{\circledR}$, https://oeis.org/

The set of all (positive) Cassini constants is a known sequence listed in OEIS ${ }^{\circledR}$ as A031363. The subset of Cassini constants created by relatively prime starting values is also listed, as A089270; and the further subset of Cassini constants which are prime numbers is listed as A038872.

Below are extracts from their entries in OEIS ${ }^{\circledR}$, and some comments.

A031363:

Positive numbers of the form $x^{\wedge} 2+x y-y^{\wedge} 2$; or, of the form $5 x^{\wedge} 2-y^{\wedge} 2$.
$1,4,5,9,11,16,19,20,25,29,31,36,41,44,45,49,55,59,61,64$, $71,76,79,80,81,89,95,99,100,101,109,116,121,124,125,131$, 139, 144, 145, 149, 151, 155, 164, 169, 171, 176, 179, 180, 181, 191, 196, 199, 205, 209, 211, 220, 225, 229, 236

The first form is $\mathrm{x}(\mathrm{x}+\mathrm{y})-\mathrm{y}^{2}$ so these are all the constants for Fibonacci-like sequences, including scalar multiples, with starting values $[x], y$. Later, we show that this set is closed under multiplication.

A089270:

Positive numbers represented by the integer binary quadratic form $x^{\wedge} 2+x^{*} y-y^{\wedge} 2$ with x and y relatively prime.

```
1, 5, 11, 19, 29, 31, 41, 55, 59, 61, 71, 79, 89, 95, 101, 109, 121, 131,
139, 145, 149, 151, 155, 179, 181, 191, 199, 205, 209, 211, 229, 239, 241,
251, 269, 271, 281, 295, 305, 311, 319, 331, 341, 349, 355, 359, 361, 379,
389, 395, 401, 409, 419, 421, 431
```

l.e. all the constants for relatively prime starting values. This set includes 1.

Any sequence S can be expressed as $\lambda(r, s)$ where r and s are relatively prime. Since $K_{s}=\lambda^{2}\left({ }_{r} K_{s}\right)$ there is a natural one-to-one mapping between A031363 and the Cartesian product of A000290 (the squares) and A089270. A089270 itself also contains some squares, e.g. $121={ }_{7} \mathrm{~K}_{3}$ and $361={ }_{9} \mathrm{~K}_{8}$.

A038872:

Primes congruent to $\{0,1,4\} \bmod 5$.

```
5, 11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 131, 139, 149, 151,
179, 181, 191, 199, 211, 229, 239, 241, 251, 269, 271, 281, 311, 331, 349,
359, 379, 389, 401, 409, 419, 421, 431, 439, 449, 461, 479, 491, 499, 509,
521, 541, 569, 571, 599, 601, 619
```

Primes of the form $x^{2}+x y-y^{2}$ (as well as of the form $x^{2}+3 x y+y^{2}$).
I.e. all the constants which are prime numbers. This set excludes 1.

Only 5 can be 0 mod 5 and prime; while 1 and 4 are $\pm 1 \bmod 5$ and must be odd, so are ± 1 mod 10 . Hence, after 5 , all the prime constants end in 1 or 9 .

A045468:

Primes congruent to $\{1,4\} \bmod 5$.

```
11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 131, 139, 149, 151, 179,
181, 191, 199, 211, 229, 239, 241, 251, 269, 271, 281, 311, 331, 349, 359,
379, 389, 401, 409, 419, 421, 431, 439, 449, 461, 479, 491
```

This is clearly A038872 without the 5 term.

A336403:

The subsequence of A 089270 which excludes terms divisible by 5 .

```
1, 11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 121, 131, 139, 149,
151, 179, 181, 191, 199, 209, 211, 229, 239, 241, 251, 269, 271, 281, 311,
319, 331, 341, 349, 359, 361, 379, 389, 401, 409, 419, 421, 431, 439, 449,
451, 461, 479, 491, 499, 509
```

Later, we show that this set is closed under multiplication.

Examples of Sequences and their Cassini Constants

In the next part of this document we shall look at the relationships between sequences, and the significance of the factors of their Cassini constants.

We now show more example sequences to inform our subsequent discussion.

Abstract

We list them in the order of their starting values [a],b with a the major number. We do not show scalar multiples and we restrict \mathbf{b} to not more than

 a/2, to show only Primary sequences (in which the Secondary can be seen backwards, with sign changes). The Fibonacci sequence is shown as [1],0.We show a few terms either side of the origin to start the sequence and its complement. We also show the Cassini constant K and its factors.
Note that K is in ascending order only within each major starting value [a].

```
... 5-3 2-1 [1] 0 1 1 2 ... K=1
... 7-4 3-1 [2] 1 347 ... K=5 (prime)
... 12-75-2 [3] 1459 ... K=11 (prime)
... 17-107-3 [4] 15611 ... K=19 (prime)
... 22-13 9-4 [5] 1 6 7 13 ... K=29 (prime)
... 19-11 8-3 [5] 2 7 9 16 ... K=31 (prime)
... 27-16 11-5 [6] 1 7 8 15 ... K=41 (prime)
... 32-19 13-6 [7] 1 8917 ... K=55 = 5 x 11
... 29-17 12-5 [7] 2 9 11 20 ... K=59 (prime)
... 26-15 11-4 [7] 3 10 13 23 ... K=61 (prime)
... 37-22 15-7 [8] 19 10 19 ... K=71 (prime)
... 31-18 13-5 [8] 3 11 14 25 ... K=79 (prime)
... 42-25 17-8 [9] 1 10 11 21 ... K=89 (prime)
... 39-23 16-7 [9] 2 11 13 24 ... K=95 = 5 x 19
... 33-19 14-5 [9] 4 13 17 30 ... K=101 (prime)
... 47-28 19-9 [10] 1 11 12 23 ... K=109 (prime)
... 41-24 17-7 [10] 3 13 16 29 ... K=121 = 11 x 11
... 52-31 21-10 [11] 1 12 13 25 ... K=131 (prime)
... 49-29 20-9 [11] 2 13 15 28 ... K=139 (prime)
...46-27 19-8 [11] 3 1417 31 ... K=145 = 5 x 29
... 43-25 18-7 [11] 4 15 19 34 ... K=149 (prime)
... 40-23 17-6 [11] 5 16 21 37 ... K=151 (prime)
... 57-34 23-11 [12] 1 13 14 27 ... K=155 = 5 x 31
... 45-26 19-7 [12] 5 17 22 39 ... K=179 (prime)
... 62-37 25-12 [13] 1 14 15 29 ... K=181 (prime)
... 59-35 24-11 [13] 2 15 17 32 ... K=191 (prime)
... 56-33 23-10 [13] 3 16 19 35 ... K=199 (prime)
... 53-31 22-9 [13] 4 17 21 38 ... K=205 = 5 x 41
... 50-29 21-8 [13] 5 18 23 41 ... K=209 = 11 x 19
... 47-27 20-7 [13] 6 19 25 44 ... K=211 (prime)
... 67-40 27-13 [14] 1 15 16 31 ... K=209 = 11 x 19
... 61-36 25-11 [14] 3 17 20 37 ... K=229 (prime)
... 5-3 2-1 [1] 0112 ... K=1
... 7 -4 3-1 [2] 1347 ... K=5 (prime)
... 12-75-2 [3] 1459 ... K=11 (prime)
... 17-107-3 [4] 15611 ... K=19 (prime)
... 22-13 9-4 [5] 16713 ... K=29 (prime)
... 19-118-3 [5] 27916 ... K=31 (prime)
... 27-16 11 -5 [6] 17815 ... K=41 (prime)
... 32 -19 13-6 [7] 18917 ... K=55 = \(5 \times 11\)
... 29-17 12-5 [7] 291120 ... K=59 (prime)
... 26-15 11 -4 [7] 3101323 ... K=61 (prime)
... 37-22 15-7 [8] 191019 ... K=71 (prime)
... 31-18 13 -5 [8] 3111425 ... K=79 (prime)
... 42-25 17-8 [9] 1101121 ... K=89 (prime)
... 39-23 16-7 [9] \(2111324 \ldots\) K=95 = \(5 \times 19\)
... 33-19 14-5 [9] 4131730 ... K=101 (prime)
... 47-28 19-9 [10] 1111223 ... K=109 (prime)
... 41-24 17-7 [10] 3131629 ... K=121 = \(11 \times 11\)
... 52-31 21 -10 [11] 1121325 ... K=131 (prime)
... 49-29 20-9 [11] 2131528 ... K=139 (prime)
... 46-27 \(19-8\) [11] \(3141731 \ldots\) K=145 = \(5 \times 29\)
... 43-25 18-7 [11] \(4151934 \ldots\) K=149 (prime)
... 40-23 17-6 [11] 5162137 ... K=151 (prime)
... 57-34 23 -11 [12] 1131427 ... K=155 = \(5 \times 31\)
... 45-26 19-7 [12] 5172239 ... K=179 (prime)
... 62-37 25 -12 [13] 1141529 ... K=181 (prime)
... 59-35 24 -11 [13] 2151732 ... K=191 (prime)
... 56-33 23-10 [13] 3161935 ... K=199 (prime)
... 53-31 22 -9 [13] 4172138 ... K=205 = \(5 \times 41\)
... 50-29 \(21-8\) [13] 5182341 ... K=209 = \(11 \times 19\)
... 47-27 \(20-7\) [13] 6192544 ... K=211 (prime)
... 67-40 \(27-13\) [14] 1151631 ... K=209 = \(11 \times 19\)
... 61-36 \(25-11\) [14] 3172037 ... K=229 (prime)
```

... 55-32 23 -9 [14] 5192443 ... K=241 (prime)
... 72-43 29-14 [15] 1161733 ... K=239 (prime)
... 69-41 28 -13 [15] 2171936 ... K=251 (prime)
... 63-37 26-11 [15] 4192342 ... K=269 (prime)
... 54-31 23 -8 [15] 7222951 ... K=281 (prime)
... 77-46 $31-15$ [16] 1171835 ... K=271 (prime)
... 71 -42 29-13 [16] 3192241 ... K=295 = 5×59
... 65-38 27 -11 [16] 5212647 ... K=311 (prime)
... 59-34 $25-9$ [16] 7233053 ... K=319 = 11×29
... $82-4933$-16 [17] 1181937 ... K=305 = 5×61
... $79-4732-15$ [17] $2192140 \ldots \mathrm{~K}=319=11 \times 29$
... 76 -45 31 -14 [17] 3202343 ... K=331 (prime)
... 73-43 30-13 [17] 4212546 ... K=341 = 11×31
... 70-41 29 -12 [17] 5222749 ... K=349 (prime)
... 67-39 $28-11$ [17] 6232952 ... K=355 = 5×71
... 64-37 $27-10$ [17] 7243155 ... K=359 (prime)
... 61 - $3526-9$ [17] $8253358 \ldots$ K=361 = 19×19
... 87-52 $35-17$ [18] $1192039 \ldots \mathrm{~K}=341=11 \times 31$
... $75-4431-13$ [18] 5232851 ... K=389 (prime)
... 69-40 $29-11$ [18] 7253257 ... K=401 (prime)
... 92-55 37-18 [19] 1202141 ... K=379 (prime)
... 89-53 36-17 [19] $2212344 \ldots$ K=395 = 5×79
... 86-51 $35-16$ [19] 3222547 ... K=409 (prime)
... 83-49 34-15 [19] 4232750 ... K=421 (prime)
... 80-47 33-14 [19] 5242953 ... K=431 (prime)
... $77-4532-13$ [19] 6253156 ... K=439 (prime)
... 74-43 31-12 [19] $7263359 \ldots$... K=445 = 5×89
... 71 -41 30-11 [19] 8273562 ... K=449 (prime)
... 68-39 29-10 [19] $9283765 \ldots \mathrm{~K}=451=11 \times 41$
... 97-58 39-19 [20] 1212243 ... K=419 (prime)
... 91-54 37-17 [20] 3232649 ... K=451 = 11×41
... $79-4633-13$ [20] 7273461 ... K=491 (prime)

This list is continued in Appendix A.

Derived Sequences

We showed earlier how the Lucas sequence can be derived from the Fibonacci sequence by adding alternate terms of F, i.e. $L(i)=F(i-1)+F(i+1)$.
If this process is repeated on the Lucas sequence the result is 5 F , the 5 -times scalar multiple of Fibonacci, i.e. $\mathrm{L}(\mathrm{i}-1)+\mathrm{L}(\mathrm{i}+1)=5 \mathrm{~F}(\mathrm{i})$, as shown in the table:

Fibonacci:	-8	5	-3	2	-1	1	$[0]$	1	1	2	3	5	8	$\mathrm{~K}_{1,0}=1$
Lucas ${ }_{1} \mathrm{~S}_{1}:$	18	-11	7	-4	3	-1	$[2]$	1	3	4	7	11	18	$\mathrm{~K}_{\mathrm{L}}=5$
$5 \mathrm{~F}:$	\ldots	25	-15	10	-5	5	$[0]$	5	5	10	15	25	\ldots	$\mathrm{~K}_{5,0}=25$

The index origins line up in the table (only) because F and 5F have a different rule to L, and we can use index " i " on both sides of the derivation definitions. Note that for λF we show the positive Cassini constants $K_{\lambda, 0}$.

A similar derivation using the root values r, s of a sequence as respective multipliers, i.e. $\mathrm{S}(\mathrm{i})=\mathbf{r F}(\mathrm{i}-1)+\mathbf{s F}(\mathrm{i}+1)$, actually results in the sequence $\mathbf{r}_{\mathbf{s}}$:

Fibonacci:	-3	2	-1	1	$[0]$	1	1	2	3	$K_{1,0}=1$
$(r, s)=r S_{s}:$	$5 r+2 s$	$-(3 r+s)$	$2 r+s$	$-r$	$[r+s]$	s	$r+2 s$	$r+3 s$	$2 r+5 s$	$K=r K_{s}$

The roots r,s can represent either the Primary or the Secondary sequence.

Sequence Ratios and Skewed-Roots of K

Earlier we showed that the ratio of consecutive terms in any Fibonacci-like sequence converges to Φ, with K being a measure of how quickly. Since the index origins line up (for the first derivation) we now consider the asymptotic ratio between terms of a general sequence and the Fibonacci sequence.

Three consecutive terms of F converge to $u / \Phi, u, u \Phi$ and since $1 / \Phi=\Phi-1$ these are $u(\Phi-1), u, u \Phi$. The corresponding middle term in ${ }_{r} S_{s}$ derived by using the roots r, s becomes ru($\Phi-1)+s u \Phi$, giving a ratio of $(r+s) \Phi-r$ between r_{s} and F, i.e. $\mathrm{r}_{\mathrm{s}}(\mathrm{n}) \rightarrow((\mathrm{r}+\mathrm{s}) \Phi-\mathrm{r}) \mathrm{F}(\mathrm{n})$ as $\mathrm{n} \rightarrow \infty$.

The complement sequence ${ }_{s} S_{r}$ has a ratio to F of $(r+s) \Phi-s$.
We call $(\mathbf{r}+\mathbf{s}) \Phi-\mathbf{r}$ and $(\mathbf{r}+\mathbf{s}) \Phi-\mathbf{s}$ the skewed-roots of $\mathbf{r}_{\mathbf{r}}$.
Note that skewed-roots are with respect to a specific sequence.
These roots have the following properties: they
(i) differ by the integer $|\mathbf{r}-\mathbf{s}|$,
(ii) sum to $(r+s) / \Phi:(r+s) \Phi-r+(r+s) \Phi-s=(r+s) \Phi-(r+s)=(r+s)(\Phi-1)=(r+s) / \Phi$,
(iii) multiply to ${ }_{r} K_{s}$ (hence their name):
$((r+s) \Phi-r)((r+s) \Phi-s)=(r+s)^{2} \Phi^{2}-(r+s) \Phi(r+s)+r s=(r+s)^{2}\left(\Phi^{2}-\Phi\right)+r s=(r+s)^{2}+r s$.
If $r>s$ the first skewed-root is less than $V_{r} K_{s}$ and the second is greater; and they are the ratios of the Primary and Secondary sequences to F, respectively.
The ratio of the Primary sequence to the Secondary sequence is:
${ }_{r} S_{s}(n) / s S_{r}(n) \rightarrow((r+s) \Phi-r) /((r+s) \Phi-s)$ or $((r+s) \Phi-r)^{2} / r K_{s}$, as $n \rightarrow \infty$.
Examples (to 3 decimal places):

${ }^{r} \mathrm{~S}_{\mathrm{s}}:$	${ }_{1} \mathrm{~S}_{1}=\mathrm{L}$	${ }_{2} \mathrm{~S}_{1}$	${ }_{3} \mathrm{~S}_{1}$	${ }_{4} \mathrm{~S}_{1}$	${ }_{3} \mathrm{~S}_{2}$	\ldots	${ }_{8} \mathrm{~S}_{5}$	${ }_{13} \mathrm{~S}_{1}$
$(\mathrm{r}+\mathrm{s}) \Phi-\mathrm{r}:$	2.236	2.854	3.472	4.090	5.090	\ldots	13.034	9.652
$(\mathrm{r}+\mathrm{s}) \Phi-\mathrm{s}:$	2.236	3.854	5.472	7.090	6.090	\ldots	16.034	21.652
$\Pi=\mathrm{r}_{\mathrm{s}}:$	5	11	19	29	31	\ldots	209	209

For K_{L} both skewed-roots are V 5 , i.e. $\mathrm{L}(\mathrm{n}) \rightarrow \mathrm{V} 5 \times \mathrm{F}(\mathrm{n})$ as $\mathrm{n} \rightarrow \infty$.
The products 29 and 31 have all four skewed-roots based on $5 \Phi=8.090 \ldots$
Since 209 is the Cassini constant of two different sequences, it has different and unrelated pairs of skewed-roots with respect to each sequence.

General (Asymptotic) Expression For S(n)

It is well known (e.g. Binet's formula) that $\mathrm{F}(\mathrm{n}) \rightarrow \Phi^{\mathrm{n}} / \mathrm{V} 5$ and $\mathrm{L}(\mathrm{n}) \rightarrow \Phi^{\mathrm{n}}$. We now also have $\mathrm{S}_{\mathrm{s}}(\mathrm{n}) \rightarrow((\mathrm{r}+\mathrm{s}) \Phi-\mathrm{r}) \mathrm{F}(\mathrm{n})$, so we can combine to give:

General Formula: $\mathrm{r}_{\mathrm{s}}(\mathrm{n}) \rightarrow((\mathrm{r}+\mathrm{s}) \Phi-\mathrm{r}) \Phi^{\mathrm{n}} / \sqrt{5}$ as $\mathrm{n} \rightarrow \infty$.

E.g. for ${ }_{8} S_{5}$: ((r+s)Ф-r)/v5 $\approx 13.034 / 2.236$ (from the table above) ≈ 5.829.

So ${ }_{8} S_{5}(10) \approx 5.829 \times 1.618^{10} \approx 5.829 \times 122.966 \approx 716.767 \approx$ integer $717(\checkmark)$.
In this example, we have rounded to 3 decimal places at every stage, and still get the correct result when rounding to the nearest integer. Using an 8-digit calculator gives ${ }_{8} \mathrm{~S}_{5}(10)=716.94170$, and correct rounded results for ${ }_{8} \mathrm{~S}_{5}(\mathrm{n})$ whenever $n \geq 6$. A rule of thumb for $r_{s}(n)$ may be accuracy when $n \geq(r+s) / 2$?

Multiplication of Sequences

We can take any sequence $P=(p, q)$ and perform a derivation using the roots r, s of $S=(r, s)$ as multipliers to produce a sequence with terms: $\mathrm{rP}(\mathrm{i}-1)+\mathrm{sP}(\mathrm{i}+1)$:

$(p, q):$	$(2 p+q)$	$-p$	$[p+q]$	q	$p+2 q$
$(p, q)(r, s):$	\ldots	$2 p r+q r+p s+q s$	$-p r+q s$	$p r+q r+p s+2 q s$	\ldots

We call this multiplication of sequences and, depending on context, use the notations $\mathrm{PS}, \mathrm{P} \times(\mathrm{r}, \mathrm{s}), \mathrm{P}(\mathrm{r}, \mathrm{s})$ or $(\mathrm{p}, \mathrm{q})(\mathrm{r}, \mathrm{s})$ to represent this process and the result, which we call the product of P and S; and use power notation e.g. P^{2} for $P \times P$. If P above is F, i.e. $p=-1$ and $q=1$, we get the results ... $-r,[r+s], s . .$. , so $F S=S$. If S above is F, e.g. $r=-1$ and $s=1$, we get the results ... $-p,[p+q], q \ldots$... so $P F=P$. Hence F is the unit element in sequence multiplication.

We could equally use roots 1,0 or 0,1 for F, since the index origin of a product is determined by the resulting values. In general, the origin cannot be labelled in the table above, but one exception is for complementary sequences:

The Product of Complementary Sequences

Suppose (p, q) above is the complement (s, r). Substituting $p=s$ and $q=r$, the three derived terms shown become: $r^{2}+3 r s+s^{2},[0], r^{2}+3 r s+s^{2}$, so the product of ${ }_{r} \mathbf{S}_{s}$ and its complement ${ }_{s} \mathbf{S}_{r}$ is a scalar multiple: $\mathbf{S S} \mathbf{S}^{\prime}=\left({ }_{r} K_{s}\right) \mathbf{F}$.

Since the Lucas sequence is its own complement, $\mathbf{L}^{2}=5 \mathrm{~F}$ as seen earlier.

Alternative Derivations/Multiplication

Multiplication can be carried out using any alternate pair u,v in the multiplying sequence, giving multipliers $-u, v$; but only the root values are non-negative pairs. For example: let $\mathrm{P}=(3,1)$ and $\mathrm{S}=(2,1)$:

$\mathrm{S}=(2,1):$	\ldots	5	-2	$[3]$	1	4	5	\ldots
$\mathrm{P}=(3,1):$	-10	7	-3	$[4]$	1	5	6	11
$(3,1)(-5,3):$		41	-23	18	-5	$[13]$	8	
$(3,1)(2,1):$		-23	$\mathbf{1 8}$	-5	$[13]$	$\mathbf{8}$	$\mathbf{2 1}$	
$(3,1)(-3,4):$		18	-5	$[13]$	8	21	29	
$(3,1)(-1,5)$		-5	$[13]$	8	21	29	50	

The same sequence results, but the terms shift diagonally in the table.

If we multiply sequence X by sequence Y, the general term in the resulting array can be expressed as $\mathrm{Z}[\mathrm{i}][\mathrm{j}]=-\mathrm{X}(\mathrm{i}-1) \mathrm{Y}(\mathrm{j}-1)+\mathrm{X}(\mathrm{i}+1) \mathrm{Y}(\mathrm{j}+1)$.
The diagonal shift can be expressed as $Z[i+1][j]=Z[i][j+1]$, and the proof:

$$
\begin{aligned}
Z[i+1][j] & =-X(i) Y(j-1)+X(i+2) Y(j+1)=-X(i) Y(j-1)+(X(i)+X(i+1)) Y(j+1) \\
& =X(i)(Y(j+1)-Y(j-1))+X(i+1) Y(j+1)=X(i) Y(j)+X(i+1)) Y(j+1)
\end{aligned}
$$

$Z[i][j+1]=-X(i-1) Y(j)+X(i+1) Y(j+2)=-X(i-1) Y(j)+X(i+1)(Y(j)+Y(j+1))$

$$
=(X(i+1)-X(i-1)) Y(j)+X(i+1) Y(j+1)=X(i) Y(j)+X(i+1)) Y(j+1)
$$

yields another relationship: $\mathrm{Z}[\mathrm{i}+1][\mathrm{j}]=\mathrm{Z}[\mathrm{i}][\mathrm{j}+1]=\mathbf{X}(\mathrm{i}) \mathrm{Y}(\mathrm{j})+\mathbf{X}(\mathrm{i}+1) \mathrm{Y}(\mathrm{j}+1)$ which expresses multiplication as consecutive terms, such as starting values, multiplying consecutive terms, which may be easier to visualise in the table.

Example of Sequence Products

Take the sequences $P=(7,5)$ and $S=(3,2)$ which, with their complements and order of multiplication, generate eight possible products:

Fibonacci	5	-3	2	-1	1	$[0]$	1	1	2	3	5	$\mathrm{~K}_{1,0}=1$
$\mathrm{P}=(7,5)$		45	-26	19	-7	$[12]$	5	17	22	39		$\mathrm{~K}=179$
$\mathrm{~S}=(3,2)$		19	-11	8	-3	$[5]$	2	7	9	16		$\mathrm{~K}=31$
$(7,5)(3,2)$		173	-92	81	-11	$[70]$	59	129			5549	
$(7,5)(2,3)$		147	-73	$[74]$	1	75	76	151			5549	
$(5,7)(3,2)$		151	-76	75	-1	$[74]$	73	147			5549	
$(5,7)(2,3)$		129	-59	$[70]$	11	81	92	173			5549	
$(3,2)(7,5)$		173	-92	81	-11	$[70]$	59	129			5549	
$(3,2)(5,7)$		151	-76	75	-1	$[74]$	73	147			5549	
$(2,3)(7,5)$			147	-73	$[74]$	1	75	76	151			5549
$(2,3)(5,7)$		129	-59	$[70]$	11	81	92	173			5549	

Several things become apparent from the table above:
(i) The Cassini constants of the products are all the same, being in fact the product of the Cassini constants: $5549=179 \times 31$.
(ii) Sequence multiplication is commutative, e.g. $(7,5)(3,2)=(3,2)(7,5)$.
(iii) The product of the complements of two sequences is the complement of the product of the sequences, e.g. $(7,5)(3,2)=(11,59)$ and $(2,3)(5,7)=(59,11)$.
(iv) The index shifts one place left or right when multiplying two noncomplementary sequences.
(v) The 8 results contain just two unique Primary sequences: $(59,11)$ and $(73,1)$.

Properties of Sequence Products

We now prove that sequence multiplication is commutative, and that the Cassini constant of the product of two sequences is the product of the Cassini constants of the two sequences.

Repeating the earlier multiplication table for $\mathrm{PS}=(\mathrm{p}, \mathrm{q}) \times(\mathrm{r}, \mathrm{s})$:

$(p, q)(r, s):$	\ldots	$2 p r+q r+p s+q s$	$-p r+q s$	$p r+q r+p s+2 q s$	\ldots

If we swap both $p \leftrightarrow r$ and $q \leftrightarrow s$ then the terms $p r$ and qs are unchanged; and the terms ps and qr are paired, so sequence multiplication is commutative.

The three derived terms give us the Cassini constant of the product:

$$
\begin{aligned}
& K_{p s}=(2 p r+q r+p s+q s)(p r+q r+p s+2 q s)-(-p r+q s)^{2} \\
& =2 p^{2} r^{2}+2 p q r^{2}+2 p^{2} r s+4 p q r s+p q r^{2}+q^{2} r^{2}+p q r s+2 q^{2} r s \\
& +p^{2} r s+p q r s+p^{2} s^{2}+2 p q s^{2}+p q r s+q^{2} r s+p q s^{2}+2 q^{2} s^{2} \\
& -p^{2} r^{2}+2 p q r s-q^{2} s^{2} \\
& =p^{2} r^{2}+3 p^{2} r s+p^{2} s^{2}+3 p q r^{2}+9 p q r s+3 p q s^{2}+q^{2} r^{2}+3 q^{2} r s+q^{2} s^{2} \\
& =\left(p^{2}+3 p q+q^{2}\right)\left(r^{2}+3 r s+s^{2}\right)=\operatorname{K}^{2} K s \text { [QED] }
\end{aligned}
$$

The result $\mathbf{K}_{\mathbf{P}} \mathrm{K}_{\mathrm{S}}=\mathrm{K}_{\mathrm{PS}}$ leads immediately to the following observation:

OEIS ${ }^{\circledR}$ A031363 is Closed Under Multiplication

An integer in A031363 is of the form $a(a+b)-b^{2}$ and so is the Cassini constant of ${ }^{a} S_{b}$, with root values $r \geq 0$ and $s \geq 0$ say, but not both zero.

Therefore two integers I,J in A031363 each relate to at least one Fibonacci-like sequence, say $P=(p, q)$ where $K_{p}=I$ and $S=(r, s)$ where $K_{s}=J$. The product of these sequences is another sequence $P S=(x, y)$ whose Cassini constant $K_{\text {ps }}$ is necessarily in A 031363 . But $K_{p s}=K_{p} K_{s}=I J$, so IJ is in A 031363 . [QED]

We have shown that for any integers $p, q, r, s \geq 0$ there are integers $x, y \geq 0$ such that $\left(x^{2}+3 x y+y^{2}\right)=\left(p^{2}+3 p q+q^{2}\right)\left(r^{2}+3 r s+s^{2}\right)$.
Next we work out how to find x, y in terms of p, q, r, s.

Root Values and Index Origin of a Sequence Product

The table for the multiplication of $P=(p, q)$ by $S=(r, s)$ is:

$(p, q):$	$-(3 p+q)$	$2 p+q$	$-p$	$[p+q]$	q	$p+2 q$	$p+3 q$
$(p, q)(r, s):$	\ldots	$-(3 p r+q r+p s)$	(N / A)	$-p r+q s$	(N / A)	$q r+p s+3 q s$	\ldots

Because each product term derives from an alternate pair, the results to the right are always positive and the results to the left alternate positive and negative. The critical term is ($-\mathrm{pr}+\mathrm{qs}$), i.e. the one "under" the origin of (p, q) because it is the only one derived from terms of opposite signs (root terms).

If $(-\mathrm{pr}+\mathbf{q s})=\mathbf{0}$ then $\mathrm{pr}=\mathrm{qs}$.
We need the following result from number theory, where "a|b" is notation for "a divides b": "if $x / y z$ but x and y are relatively prime then x / z ".
Let $(p, q)=\lambda\left(p^{\prime}, q^{\prime}\right)$ where λ is the hcf of p and q; and let $(r, s)=\mu\left(r^{\prime}, s^{\prime}\right)$ where μ is the hcf of r and s. Then $p^{\prime} r^{\prime}=q^{\prime} s^{\prime}$, so $p^{\prime} \mid q^{\prime} s^{\prime}$, but p^{\prime} and q^{\prime} are relatively prime so $p^{\prime} \mid s^{\prime} ;$ similarly $s^{\prime} \mid p^{\prime} r^{\prime}$ but r^{\prime} and s^{\prime} are relatively prime so $s^{\prime} \mid p^{\prime}$.
Hence $p^{\prime}=s^{\prime}$ and $q^{\prime}=r^{\prime}$, so $\left(p^{\prime}, q^{\prime}\right)=\left(s^{\prime}, r^{\prime}\right)=T$ say. Therefore $P=\lambda T$ and $S=\mu T^{\prime}$, so: P and S are scalar multiples of complementary sequences, and the product $P S=\left(\lambda \mu K_{T}\right) F$ is a scalar multiple of $F-$ with origin [0] unshifted in the table.

But generally, multiplication causes the origin to shift one place in the table:
If ($\mathbf{- p r} \boldsymbol{+} \mathbf{q s}$) $<\mathbf{0}$ it is the left of the pair with opposite signs so has index " -1 ", the root values are (pr - qs),(qr + ps + 3qs). The origin shifts one place right.

If ($-\mathbf{p r} \boldsymbol{+ q s}$) $\mathbf{>} \mathbf{0}$ it is the right of the pair with opposite signs so has index " +1 ", the root values are ($3 \mathrm{pr}+\mathrm{qr}+\mathrm{ps}$),(qs $\mathbf{- p r})$. The origin shifts one place left.

In either non-zero case $|p r-q s|$ is one of the root values. Say it is x, then y can be calculated from $x^{2}+3 x y+y^{2}=K$ (where $\left.K=K p s\right)$, giving the quadratic: $y^{2}+3 x y+x^{2}-K=0$ and $y=\left(-3 x \pm V\left(9 x^{2}-4\left(x^{2}-K\right)\right) / 2=\left(-3 x \pm V\left(5 x^{2}+4 K\right)\right) / 2\right.$. Note that $\left(5 x^{2}+4 K\right)$ must be a perfect square, and turns out to be $(3 x+2 y)^{2}$.
I.e. the root values of $(p, q)(r, s)$ are $x=|p r-q s|$ and $y=\left(-3 x+\sqrt{ }\left(5 x^{2}+4 K_{p s}\right)\right) / 2$.

Using the examples of sequence multiplication in the earlier table: K=5549 and $(7,5)(3,2)$ gives $x=11$ and $y=59$ while $(7,5)(2,3)$ gives $x=|-1|=1$ and $y=73$.

Product of Two Primary Sequences

The product of two primary sequences may or may not be a primary sequence. If $p>q$ and $r>s$ then $-p r+q s<0$. For the product to be primary we need:
$p r-q s>q r+p s+3 q s$ i.e. $p r>q r+p s+4 q s$, which happens when both p is sufficiently greater than q and r is sufficiently greater than s .

For example: $(3,1)(3,1)=(8,9)$ is secondary but $(4,1)(3,1)=(11,10)$ is primary.
Further: $(10,1)(3,2)=(28,29)$ is secondary and $(12,1)(3,2)=(34,33)$ is primary, while the middle product $(11,1)(3,2)=(31,31)$ is the scalar multiple $31(1,1)$.
This is because $(11,1)$ is itself the product $(2,3)(1,1)$, so the combination gives a product of complementary sequences: $(3,2)(2,3)(1,1)=31(1,1)$ where $31=3 \mathrm{~K}_{2}$.

We rearranged the terms above using commutativity and the following result:

Sequence Multiplication is Associative

We show that $((p, q)(r, s))(u, v)=(p, q)((r, s)(u, v))$:
For $((p, q)(r, s))(u, v)$ we get:

$(p, q):$	$-(3 p+q)$	$2 p+q$	$-p$	$[p+q]$	q	$p+2 q$	$p+3 q$
$(p, q)(r, s):$	\ldots	$-(3 p r+q r+p s)$	(N / A)	$-p r+q s$	(N / A)	$q r+p s+3 q s$	\ldots
$((p, q)(r, s))(u, v):$	\ldots	\ldots	$-(3 p r+q r+p s) u$ $+(-p r+q s) v$	(N / A)	$(-p r+q s) u+$ $(q r+p s+3 q s) v$	\ldots	\ldots

For $(p, q)((r, s)(u, v))$ we commute to $((r, s)(u, v))(p, q)$:

$(r, s):$	$-(3 r+s)$	$2 r+s$	$-r$	$[r+s]$	s	$r+2 s$	$r+3 s$
$(r, s)(u, v):$	\ldots	$-(3 r u+s u+r v)$	(N / A)	$-r u+s v$	(N / A)	$s u+r v+3 s v$	\ldots
$((r, s)(u, v))(p, q):$	\ldots	\ldots	$-(3 r u+s u+r v) p$ $+(-r u+s v) q$	(N/A)	$(-r u+s v) p$ $(s u+r v+3 s v) q$	\ldots	\ldots

Being -(3pru + qru + psu + prv - qsv) and (-pru + qsu + qrv + psv + 3qsv), the two derived terms are the same for both products. They may not be the roots but they do define the sequences, so $((p, q)(r, s))(u, v)=(p, q)((r, s)(u, v))$. [QED]

The Product of the Complements of Sequences

We can now prove what we saw from the examples in the earlier table:
The product of the complements of two sequences is the complement of the product of the sequences, or $(P S)^{\prime}=P^{\prime} S^{\prime}$: if $(a, b)(c, d)=(x, y)$ then $(b, a)(d, c)=(y, x)$, which commutes to $(\mathrm{y}, \mathrm{x})=(\mathrm{d}, \mathrm{c})(\mathrm{b}, \mathrm{a})$ and $(\mathrm{PS})^{\prime}=S^{\prime} \mathrm{P}^{\prime}$.

Suppose $(-a c+b d)<0$. (A similar argument applies if $(-a c+b d)>0$.)
For the complement of the product, let $p=a, q=b, r=c, s=d$.
Then (-pr+qs) $=(-\mathrm{ac}+\mathrm{bd})<0$, giving roots ($\mathrm{pr}-\mathrm{qs}$),(qr $+\mathrm{ps}+3 q \mathrm{~s})$ which become ($a c-b d$), $(b c+a d+3 b d)$ and so the complement of the product has root values ($b c+a d+3 b d$), $(a c-b d)$.

For the product of the complements $(b, a)(d, c)$, let $p=b, q=a, r=d, s=c$.
Then (-pr+qs)=(-bd+ac)>0, giving roots (3pr + qr +ps),(qs -pr) which become ($3 b d+a d+b c$), $(a c-b d)$. These are the same as above. [QED]

We can extend this to three or more sequences, i.e. (PSU)' = U'S' P^{\prime} : $(P S U)^{\prime}=((P S) U)^{\prime}=(P S)^{\prime} U^{\prime}=\left(P^{\prime} S^{\prime}\right) U^{\prime}=P^{\prime} S^{\prime} U^{\prime}=U^{\prime} S^{\prime} P^{\prime}$.

Terminology/Classification of Sequences

Having looked at sequence multiplication we next turn to Factorisation, and will use the following terminology:

A prime sequence is one with a prime Cassini constant, i.e. one which is in A038872. Its starting and root values are necessarily relatively prime.

A relatively prime sequence has relatively prime starting and root values and its Cassini constant is in A089270. This may or may not be prime.
A prime sequence is also a relatively prime sequence.
We previously defined a scalar multiple sequence as one in which every term has a common factor λ. Its Cassini constant has the factor λ^{2}, and is in A031363 but not A038872 (the prime Cassini constants), and may or may not be in A089270. Scalar multiple sequences are mutually exclusive with the relatively prime sequences (including prime sequences).

Sequence Factorisation and Number Theory Conjectures

If a sequence S has sequence factors X and Y then $K_{s}=K_{x} K_{Y}$, so to factorise S we look at the numerical factors of K_{s}. Since different sequences can have the same Cassini constant, K_{s} alone is not enough - we need the root values of S. If we know the root (or starting) values of a sequence we can pull out any common factor and express the sequence as λS, or $\lambda(r, s)$ where r and s are relatively prime, and its Cassini constant is $\lambda^{2} \mathrm{~K}_{\text {s }}$.

A computer program generated Cassini constants for all starting values $\mathrm{a}=\mathrm{r}+\mathrm{s}$ from 1 to 10,000 and $b \leq a / 2$ ($r \geq s$). The results included $3,317,555$ prime numbers, the last being for $(r, s)=(5003,4997)$ giving prime $K=124,999,991$. There were no duplicate primes, which suggests:

Conjecture \#1

If $K=\left(r^{2}+3 r s+s^{2}\right)$ is a prime >5, then $r>s>0$ are uniquely determined.
In other words, a prime Cassini constant (a number in OEIS ${ }^{\circledR}$ A038872) corresponds to just one pair of complementary sequences (r, s) and (s, r), or if $K=5$ to the Lucas sequence $(r, s)=(1,1)$.

For ${ }_{r} K_{s}$ to be prime r and s must be relatively prime, but it is neither necessary nor sufficient that either or both be prime; for example: ${ }_{3} \mathrm{~K}_{2}=31,4 \mathrm{~K}_{3}=61$ and ${ }_{15} \mathrm{~K}_{4}=421$ are all prime, while ${ }_{7} \mathrm{~K}_{2}=95,{ }_{8} \mathrm{~K}_{5}=209$ and ${ }_{9} \mathrm{~K}_{4}=205$ are all composite.

The listing earlier and Appendix A show sequences generated from relatively prime roots, with their Cassini constants. Where a constant is not prime its prime factors are shown, and we observe that each of these factors appears earlier in the listing as Cassini constants of prime sequences. This suggests:

Conjecture \#2a

If u and v are relatively prime then $K=\left(u^{2}+3 u v+v^{2}\right)$ is either prime or is the product of prime factors each of the same form.

In other words, if u, v are relatively prime but K is not prime then it has factors $K=\left(p^{2}+3 p q+q^{2}\right)\left(r^{2}+3 r s+s^{2}\right)$ where $p, q, r, s>0$; and since the pairs p, q and r, s must each be relatively prime this process can be repeated until all the factors are prime and of the same form. Appendix B shows examples of this.

Since each prime factor corresponds to a prime sequence, we have:

Conjecture \#2b

Every sequence is a scalar multiple (possibly 1) of the product of prime sequences. This factorisation is unique, apart from order.

The factor 5 corresponds only to the Lucas sequence (1,1). Other prime factors each correspond to one of two complementary prime sequences. Given the root values of a sequence S we can calculate K_{s}, find its prime factors and form the products of all combinations of the corresponding prime sequences. One, and only one, of these will be the sequence S.

For example the sequence (12,17): ... $41-12$ [29] 1746 ... has $K=1045$ $=5 \times 11 \times 19$, where $5={ }_{1} \mathrm{~K}_{1}\left(=\mathrm{K}_{\mathrm{L}}\right), 11={ }_{2} \mathrm{~K}_{1}={ }_{1} \mathrm{~K}_{2}$ and $19={ }_{3} \mathrm{~K}_{1}={ }_{1} \mathrm{~K}_{3}$, so can result from four different sequences, in two complementary pairs: $(1,1)(2,1)(3,1)=(28,3)$, $(1,1)(2,1)(1,3)=(12,17),(1,1)(1,2)(3,1)=(17,12)$ and $(1,1)(1,2)(1,3)=(3,28)$.
So the required prime sequence factorisation is: $(12,17)=(1,1)(2,1)(1,3)$.
(The non-prime factorisations are $(12,17)=(1,1)(13,1)=(2,1)(7,2)=(1,3)(1,6)$.)
The factor 5 can appear only once, since $L^{2}=5 F$ would make a scalar multiple. Other prime factors can appear to any power, which we now consider:

Sequences with Cassini Constant $\left({ }_{r} K_{s}\right)^{n}$, where $\mathrm{r} \neq \mathrm{s}$ are Relatively Prime

$\left(r_{s} K^{n}=\left({ }_{s} K_{r}\right)^{n}\right.$ is the Cassini constant of sequences with n factors, each either (r, s) or (s, r). Of the 2^{n} combinations there are $n+1$ different products of the form $(r, s)^{n-c}(s, r)^{c}$ where $c=0, \ldots, n$. If c is neither 0 nor n, the product contains complementary pairs and is a scalar multiple: if $c<n / 2$ it is $\left(r K_{s}\right)^{c}(r, s)^{n-2 c}$, if $c>n / 2$ it is $\left(r K_{s}\right)^{n-c}(s, r)^{2 c-n}$, and if n is even and $c=n / 2$ it is $\left(r K_{s}\right)^{c} F$.

Hence only $(r, s)^{n}$ and its complement $(s, r)^{n}$ can be relatively prime sequences.
The following are examples for $\left(3 K_{1}\right)^{2}=19^{2}$ and $\left(2 K_{1}\right)^{3}=11^{3}$.

$\left({ }_{3} \mathrm{~K}_{1}\right)^{2}:$	$(3,1)^{2}=(8,9)$	19 F	$(1,3)^{3}=(9,8)$	
$\left({ }_{2} \mathrm{~K}_{1}\right)^{3}:$	$(2,1)^{3}=(35,1)$	$11(2,1)$	$11(1,2)$	$(1,2)^{3}=(1,35)$

Sequences Which Have A Given Cassini Constant

We can now determine the number and form of all the sequences which have a given Cassini Constant K, and hence the solutions to $\left(r^{2}+3 r s+s^{2}\right)=K$.

A general Cassini constant, like any number, can be factorised into a product of powers of primes: $\Pi\left(p_{i} \wedge^{\wedge} n_{i}\right)$, where " \wedge " means "to the power of".

We start with F as the identity or null-product sequence for the first factor, with scalar multiplier $\lambda=1$ and number of sequences $N=1$.
With p_{i} in ascending order we process each term $p_{i}{ }^{\wedge} n_{i}$ as follows:

1) If p_{i} is not a prime Cassini constant (i.e. not in A038872), then it can only arise from a scalar multiple and n_{i} must be even, say $n_{i}=2 c_{i}$. We multiply λ by $p_{i}{ }^{\wedge} c_{i}$, but the sequence factors and number of sequences N remain the same.
2) If p_{i} is 5 , it corresponds to $L=(1,1)$ which can appear as a sequence factor at most once; but 5 can be a numerical factor to any power.
If n_{i} is odd, replace the first sequence factor F by $L=(1,1)$.
If $n_{i}>1$, the other factors 5 can only arise from scalar multiples ($\left.L^{2}=5 F\right)$.
Express n_{i} as $2 c_{i}$ or ($2 c_{i}+1$) as appropriate, and multiply λ by $5^{\wedge} c_{i}$.
In all cases, the number of sequences N remains the same.
3) If p_{i} is a prime Cassini constant other than 5 , then there are $\left(n_{i}+1\right)$ possible choices for the next sequence factor, as discussed above. Multiply N by $\left(n_{i}+1\right)$. If $n_{i}>1$, all but 2 of these choices result in a further scalar multiple factor, which applies only to sequence products with that choice.

Each of the N resulting sequences can be evaluated to give a unique ($r, s)$, and for each (r, s) there will also be a corresponding complement (s, r).

Examples

Above we looked at the cases for $\mathrm{K}=1045=5 \times 11 \times 19$ where $\lambda=1$ and $\mathrm{N}=4$:
$(1,1)(2,1)(3,1),(1,1)(2,1)(1,3),(1,1)(1,2)(3,1)$ and $(1,1)(1,2)(1,3)$, giving sequences: $(28,3),(12,17),(17,12)$ and $(3,28)$.

For $K=5225=5^{2} \times 11 \times 19$, these become $\lambda=5$ and $N=4$:
$5(2,1)(3,1)=(25,40), 5(2,1)(1,3)=(65,5), 5(1,2)(3,1)=(5,65), 5(1,2)(1,3)=(40,25)$.
For $K=480491=11^{3} \times 19^{2}$ we get $N=12$ and the following possible sequences shown in table form, where the relatively prime results are highlighted:

$(2,1)^{3}(3,1)^{2}$ $=(271,350)$	$11(2,1)(3,1)^{2}$ $=(77,583)$	$11(1,2)(3,1)^{2}$ $=(539,110)$	$(1,2)^{3}(3,1)^{2}$ $=(313,307)$
$19(2,1)^{3}$ $=(665,19)$	$11 \times 19(2,1)$ $=(418,209)$	$11 \times 19(1,2)$ $=(209,418)$	$19(1,2)^{3}$ $=(19,665)$
$(2,1)^{3}(1,3)^{2}$	$11(2,1)(1,3)^{2}$	$11(1,2)(1,3)^{2}$	$(1,2)^{3}(1,3)^{2}$
$=(307,313)$	$=(110,539)$	$=(583,77)$	$=(350,271)$

So the 12 solutions to $r^{2}+3 r s+s^{2}=480491$ are the r, s and s, r pairs:, 66519 , 58377 , 539110 , 418209 , 350271 and 313307 .

The number of relatively prime solutions to $\left(r^{2}+3 r s+s^{2}\right)=K$ depends only on the number of distinct prime factors other than 5 and not on their powers. Each such prime (a number in A045468) doubles the possibilities.

Sequences $(r, s)^{n}$, where $r \neq s$ are Relatively Prime

The following tables show some powers of $(2,1)$, with root terms highlighted:

${ }_{2} \mathrm{~S}_{1}=(2,1)$	-7	5	$\mathbf{- 2}$	$[3]$	$\mathbf{1}$	4	5	9	14	$\mathrm{~K}=11$	Primary
$(2,1)(2,1)$		-16	13	-3	$[10]$	$\mathbf{7}$	17	24		$\mathrm{~K}=121$	Secondary
$(2,1)^{3}$			-35	$[36]$	$\mathbf{1}$	37	38			$\mathrm{~K}=1331$	Primary
$(2,1)^{4}$				-69	$[109]$	$\mathbf{4 0}$				$\mathrm{K}=11^{4}$	Primary

Continuing:

| $(2,1)^{4}$ | | -69 | $[109]$ | $\mathbf{4 0}$ | | | $\mathrm{K}=11^{4}$ | Primary |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(2,1)^{5}$ | | | -98 | $[367]$ | $\mathbf{2 6 9}$ | | $\mathrm{K}=11^{5}$ | Secondary |
| $(2,1)^{6}$ | | $-\mathbf{1 2 2 4}$ | $[1297]$ | $\mathbf{7 3}$ | | | $\mathrm{K}=11^{6}$ | Primary |
| $(2,1)^{7}$ | | | $\mathbf{- 2 3 7 5}$ | $[3964]$ | $\mathbf{1 5 8 9}$ | | $\mathrm{K}=11^{7}$ | Primary |
| $(2,1)^{8}$ | | | | $\mathbf{- 3 1 6 1}$ | $[13481]$ | $\mathbf{1 0 3 2 0}$ | $\mathrm{K}=11^{8}$ | Secondary |
| $(2,1)^{9}$ | | | $\mathbf{- 4 2 7 6 7}$ | $[46765]$ | $\mathbf{3 9 9 8}$ | | $\mathrm{K}=11^{9}$ | Primary |

Note that all the resulting sequences are relatively prime.
For $(r, s)^{n}$ to be a relatively prime sequence it is necessary for r and s to be relatively prime. This example suggests that this is also a sufficient condition:

Conjecture \#3a

If (r, s) is a relatively prime sequence other than $(1,1),(1,0)$ or $(0,1)$, then $(r, s)^{n}$ is a relatively prime sequence.

In other words: apart from the Fibonacci sequence, which acts as an identity, and the Lucas sequence which is its own complement, every power of a relatively prime sequence is also a (different) relatively prime sequence.

Appendix C shows examples of products of pairs of relatively prime sequences. The only products which are scalar multiples are products of complementary pairs, or of sequences which appear as products earlier in the list and between them have a complementary pair of prime factors. This suggests:

Conjecture \#3b

If (p, q) and (r, s) are both relatively prime sequences, then the product sequence $(p, q)(r, s)$ is relatively prime if and only if (p, q) and (r, s) between them have no complementary pair of prime sequences as factors.

Corollary

The product of any two numbers in A089270 which are not both divisible by 5 is also in A089270.

The proof is an extension of the proof of the closure of A031363.
Two integers I,J in A089270 each relate to at least one relatively prime sequence, say P where $K_{p}=I$ and S where $K_{s}=J$. Each of these sequences can be factorised into a product of prime sequences. If S has any prime factor (v, u) which is the complement of a prime factor (u, v) of P it cannot be $(1,1)$, or the Cassini constants of both sequences would be divisible by 5 . Since $u \neq v$ we can create a new sequence T which has factor (u, v) instead of (v, u), and $K_{T}=K_{s}$ unchanged. Repeat this process until T has no complement of any factor of P. The product of P and T is relatively prime by the conjecture, and so $K_{\text {PT }}$ is in A089270. But $K_{P T}=K_{P} K_{T}=K_{P} K_{S}=I J$, so IJ is in A089270. [QED]

Sequence A336403 and its Closure Under Multiplication

A336403 is the subsequence of A089270 which excludes terms divisible by 5 .
The proof above applies to show A336403 is closed under multiplication.
A336403 can also be defined as: "Numbers $r^{2}+3 r s+s^{2}$ not divisible by 5, with r and s relatively prime", and can be further limited: "with $r>s \geq 0$ ".

Properties of Related Sequences

A031363 consists of all, and only, Cassini constants. It has a natural one-to-one mapping with the Cartesian product of A000290 (the squares) and A089270.	
A089270 is the subsequence of above with relatively prime roots.	A336403 is A089270 without 5 and all multiples of 5.
A038872 is the prime number subsequence of above.	A045468 is the prime number subsequence of above, and is A033872 without the 5.

The numbers in A089270 all have prime factors in A038872, and the product of any numbers in A038872, except 5, each to any power is in A089270. The prime 5 may also appear, but just once, in any such product.

The numbers in A336403 all have prime factors in A045468, and the product of any numbers in A045468, each to any power, is in A336403.

Appendix A

Examples of Fibonacci-Like Sequences, Their Cassini Constants and Factors

This list is an extension of the examples shown earlier in the document, and has starting values in the range [20] through [55].
Entries are listed the order of their starting values [a],b with a the major number, with \mathbf{a} and \mathbf{b} relatively prime. We restrict \mathbf{b} to not more than $\mathbf{a} / \mathbf{2}$. We show a few terms either side of the origin to start the sequence and its complement. We also show the Cassini constant K and its factors.
Note that K is in ascending order only within each major starting value [a].
For each value of a, K has bounds: $a^{2}<K<\left(5 a^{2}\right) / 4$.

... 33-14 [19] 524 ... K=431 (prime)
... 32-13 [19] 625 ... K=439 (prime)
31-12 [19] $726 \ldots .$. K=445 = 5×89
... 29-10 [19] 928 ... K=451 = 11×41
... 39-19 [20] 121 ... K=419 (prime)
... 37-17 [20] 323 ... K=451 = 11×41
... 33-13 [20] 727 ... K=491 (prime)
.. 31-11 [20] 929 ... K=499 (prime)
... 41 20 21 1 22 ... $K=461$ (pime)
... 38-17 [21] 425 ... K=509 (prime)
... 37-16 [21] 526 ... K=521 (prime)
... 34-13 [21] 829 ... K=545 = 5×109
... $32-11$ [21] $1031 \ldots \mathrm{~K}=551=19 \times 29$
... 43-21 [22] 123 ... K=505 = 5×101
41-19 [22] 325 ... K=541 (prime)
... $37-15$ [22] $729 \ldots$ K=589 = 19×31
... 35-13 [22] 931 ... K=601 (prime)
... 45-22 [23] $124 \ldots$ K=551 = 19×29
... 44-21 [23] 225 ... K=571 (prime)
.. 43-20 [23] $326 \ldots$ K=589 = 19×31
-19[23] $427 \ldots \mathrm{~K}=605=5 \times 11 \times 11$
(prime)
... 39-16 [23] 730 ... K=641 (prime)
... 38-15 [23] $831 \ldots$ K=649 = 11×59
.. 37-14 [23] 932 ... K=655 = 5×131
.. 36 -13 [23] 1033 ... K=659 (prime)
-12 [23] $1134 \ldots \mathrm{~K}=661$ (prime)
... 47-23 [24] 125 ... $K=599$ (ріме)
... 41-17 [24] $731 \ldots$ K=695 = 5×139
... 37-13 [24] $1135 \ldots$ K=719 (prime)
... $49-24$ [25] 126 ... K=649 = 11×59
... 48 -23 [25] 227 ... K=671 = 11×61
... 46-21 [25] 429 ... K=709 (prime)
... 44-19 [25] 6 31 ... K=739 (prime)
... 43-18 [25] 732 ... K=751 (prime)
... 42-17 [25] 833 ... K=761 (prime)
... 41-16 [25] 934 ... K=769 (prime)
... 39-14 [25] $1136 \ldots$ K=779 = 19×41
... 38-13 [25] $1237 \ldots$ K=781 = 11×71
... 51-25 [26] 127 ... K=701 (prime)
... $49-23$ [26] $329 \ldots \mathrm{~K}=745=5 \times 149$
... 47-21 [26] $531 \ldots$ K=781 = 11×71
... 45-19 [26] 733 ... K=809 (prime)
... 43-17 [26] 935 ... K=829 (prime)
... 41-15 [26] $1137 \ldots$ K=841 = 29×29
... 53-26 [27] $128 \ldots$ K=755 = 5×151
... 52-25 [27] 229 ... K=779 = 19×41
... 50-23 [27] 431 ... K=821 (prime)
... 49-22 [27] $532 \ldots$ K=839 (prime)
... 47-20 [27] 734 ... K=869 = 11×79
... 46-19 [27] 835 ... K=881 (prime)
... 44-17 [27] $1037 \ldots$... K=899 = 29×31
... 43-16 [27] $1138 \ldots$... K=905 = 5×181
... 41 -14 [27] 1340 ... K=911 (prime)
... 55-27 [28] 129 ... K=811 (prime)
... 53-25 [28] 331 ... K=859 (prime)
... $51-23$ [28] 533 ... K=899 = 29×31
... 47-19 [28] 937 ... K=955 = 5×191
... 45-17 [28] 1139 ... K=971 (prime)
... 43-15 [28] $1341 \ldots$... K=979 = 11×89
... $57-28$ [29] $130 \ldots$ K=869 = 11×79
... 56-27 [29] 231 ... K=895 = 5×179
... 55-26 [29] 332 ... K=919 (prime)
... 54-25 [29] 433 ... K=941 (prime)
... $53-24$ [29] $534 \ldots$ K=961 = 31×31
... 52-23 [29] $635 \ldots$ K=979 = 11×89
... 51-22 [29] $736 \ldots$ K=995 = 5×199
... 50-21 [29] 837 ... K=1009 (prime)
... 49-20 [29] 938 ... K=1021 (prime)
... 48-19 [29] 1039 ... K=1031 (prime)
... 47-18 [29] 1140 ... K=1039 (prime)
... 46-17 [29] 1241 ... K=1045 = $5 \times 11 \times 19$
... 45-16 [29] 1342 ... K=1049 (prime)
... 44-15 [29] 1443 ... K=1051 (prime)

... 53-23 [30] 737 ... K=1061 (prime)
... 49-19 [30] 1141 ... K=1109 (prime)
... $47-17$ [30] 1343 ... K=1121 = 19×59
.. 61-30 [31] 132 ... K=991 (prime)
-29 [31] $233 \ldots K=1019$ (prime)
.. 58-27 [31] 435 ... K=1069 (prime)
.. 57-26 [31] 536 ... K=1091 (prime)
... $56-25$ [31] 637 ... K=1111 = 11×101
.. 55-24 [31] 738 ... K=1129 (prime)
.. $54-23$ [31] 839 ... K=1145 = 5×229
... 52-21 [31] 1041 ... K=1171 (prime)
... 51-20 [31] 1142 ... K=1181 (prime)
... 50-19 [31] 1243 ... K=1189 = 29×41
... $49-18$ [31] 1344 ... K=1195 = 5×239
.. 48-17 [31] 1445 ... K=1199 = 11×109
47-16 [31] 1546 ... K=1201 (prime)
... $61-29$ [32] $335 \ldots \mathrm{~K}=1111=11 \times 101$
... 59-27 [32] $537 \ldots$ K=1159 = 19×61
... $57-25$ [32] $739 \ldots \mathrm{~K}=1199=11 \times 109$
... 55-23 [32] 941 ... K=1231 (prime)
.. $53-21$ [32] 1143 ... K=1255 = 5×251
.. 51-19 [32] $1345 \ldots \mathrm{~K}=1271=31 \times 41$
... 49 17 [32] 1547 ... K=1279 (prime)
... 64-31 [33] 235 ... K=1151 (prime)
... 62-29 [33] $437 \ldots$ K=1205 = 5×241
... $61-28$ [33] 538 ... K=1229 (prime)
.. $59-26$ [33] $740 \ldots \mathrm{~K}=1271=31 \times 41$
.. 58-25 [33] 841 ... K=1289 (prime)
... 56 23 [33] 1043 ... K=1319 (prime)
... 52-19 [33] 1447 ... K=1355 = 5×271
... 50-17 [33] $1649 \ldots$... K=1361 (prime)
... $67-33$ [34] $135 \ldots$ K=1189 = 29×41
. $65-31$ [34] $337 \ldots$ K=1249 (prime)
63-29 [34] $539 \ldots \mathrm{~K}=1301$ (prime)
.. 59-25 [34] 943 ... K=1381 (prime)
... 57-23 [34] 1145 ... K=1409 (prime)
... 55-21 [34] 1347 ... K=1429 (prime)
.. 53-19 [34] 1549 ... K=1441 = 11×131
... 69-34 [35] 136 ... K=1259 (prime)
.. $68-33$ [35] $237 \ldots$... K=1291 (prime)
... 66-31 [35] $439 \ldots$ K=1349 = 19×71
... 64-29 [35] 641 ... K=1399 (prime)
... $62-27$ [35] $843 \ldots$ K=1441 = 11×131
... 61-26 [35] 944 ... K=1459 (prime)
.. 59-24 [35] 1146 ... K=1489 (prime)
[35] $1247 \ldots \mathrm{~K}=1501=19 \times 79$
... 54-19 [35] 1651 ... K=1529 = 11×139
... 53-18 [35] 1752 ... K=1531 (prime)
... $71-35$ [36] $137 \ldots$ K=1331 = $11 \times 11 \times 11$
... 67-31 [36] 541 ... K=1451 (prime)
... 65-29 [36] 743 ... K=1499 (prime)
... 61-25 [36] 1147 ... K=1571 (prime)
... 59-23 [36] $1349 \ldots \mathrm{~K}=1595=5 \times 11 \times 29$
... 55-19 [36] 1753 ... K=1619 (prime)
... 73-36 [37] $138 \ldots$ K=1405 = 5×281
... 72 -35 [37] 239 ... K=1439 (prime)
... 71 -34 [37] 340 ... K=1471 (prime)
... $70-33$ [37] $441 \ldots \mathrm{~K}=1501=19 \times 79$
... $69-32$ [37] $542 \ldots \mathrm{~K}=1529=11 \times 139$
... 68-31 [37] $643 \ldots \mathrm{~K}=1555=5 \times 311$
... 67-30 [37] 744 ... K=1579 (prime)
... 66-29 [37] 845 ... K=1601 (prime)
... $65-28$ [37] 946 ... K=1621 (prime)
... 64-27 [37] 1047 ... K=1639 = 11×149
... $63-26$ [37] 1148 ... K=1655 = 5×331
... 62-25 [37] 1249 ... K=1669 (prime)
... $61-24$ [37] 1350 ... K=1681 = 41×41
... $60-23$ [37] $1451 \ldots \mathrm{~K}=1691=19 \times 89$
... 59-22 [37] 1552 ... K=1699 (prime)
... 58-21 [37] 1653 ... K=1705 = $5 \times 11 \times 31$
... 57-20 [37] 1754 ... K=1709 (prime)
... 56-19 [37] 1855 ... K=1711 = 29×59
... 75 -37 [38] 139 ... K=1481 (prime)
... 73 -35 [38] 341 ... K=1549 (prime)
... 71 -33 [38] 543 ... K=1609 (prime)
... $69-31$ [38] $745 \ldots \mathrm{~K}=1661=11 \times 151$
... 67-29 [38] 947 ... K=1705 = $5 \times 11 \times 31$
... 65-27 [38] 1149 ... K=1741 (prime)
... $63-25$ [38] 1351 ... K=1769 = 29×61
... 61-23 [38] 1553 ... K=1789 (prime)
... 59-21 [38] 1755 ... K=1801 (prime)
... $77-38$ [39] $140 \ldots \mathrm{~K}=1559$ (prime)
... $76-37$ [39] $241 \ldots \mathrm{~K}=1595=5 \times 11 \times 29$
... $74-35$ [39] 443 ... K=1661 $=11 \times 151$
... 73 -34 [39] $544 \ldots$ K=1691 $=19 \times 89$
... 71 -32 [39] $746 \ldots$... K=1745 $=5 \times 349$
... 70-31 [39] 847 ... K=1769 = 29×61
... 68-29 [39] 1049 ... K=1811 (prime)
... 67-28 [39] $1150 \ldots$ K=1829 = 31×59
... 64-25 [39] 1453 ... K=1871 (prime)
... 62 -23 [39] 1655 ... K=1889 (prime)
... $61-22$ [39] 1756 ... K=1895 = 5×379
... 59-20 [39] 1958 ... K=1901 (prime)
... 79 -39 [40] 141 ... K=1639 = 11×149
... $77-37$ [40] $343 \ldots$ K=1711 $=29 \times 59$
... $73-33$ [40] $747 \ldots \mathrm{~K}=1831$ (prime)
... 71 -31 [40] 949 ... K=1879 (prime)
... 69-29 [40] 1151 ... K=1919 = 19×101
... 67-27 [40] 1353 ... K=1951 (prime)
... 63-23 [40] $1757 \ldots$ K=1991 = 11×181
... 61-21 [40] 1959 ... K=1999 (prime)
... $81-40$ [41] $142 \ldots \mathrm{~K}=1721$ (prime)
... 80-39 [41] 243 ... K=1759 (prime)
... $79-38$ [41] $344 \ldots$... K=1795 = 5×359
... $78-37$ [41] $445 \ldots$ K=1829 $=31 \times 59$

... 77 -36 [41] 546 ... K=1861 (prime)
.. $76-35$ [41] $647 \ldots \mathrm{~K}=1891=31 \times 61$
... $75-34$ [41] 748 ... K=1919 = 19×101
.. $74-33$ [41] $849 \ldots \mathrm{~K}=1945=5 \times 389$
.. $73-32$ [41] $950 \ldots$... K=1969 = 11×179
... 72 [41] $1051 \ldots$... $K=1901=11 \times 181$
.. 70-29 [41] 1253 ... K=2029 (prime)
... $69-28$ [41] 1354 ... K=2045 = 5×409
.. 67-26 [41] 1556
... 66-25 [41] 1657 ... K=2081 (prime)
.. $65-24$ [41] 1758 ... K=2089 (prime)
... $64-23$ [41] $1859 \ldots$ K=2095 = 5×419
... 63-22 [41] 1960 ... K=2099 (prime)
... $62-21$ [41] 2061 ... K=2101 = 11×191
... $83-41$ [42] 143 ... K=1805 = $5 \times 19 \times 19$
... 79 -37 [42] 547 ... K=1949 (prime)
.. 73 -31 [42] 1153 ... K=2105 = 5×421
... $67-25$ [42] $1759 \ldots$ K=2189 = 11×199
... $65-23$ [42] 1961 ... K=2201 = 31×71
... $85-42$ [43] $144 \ldots \mathrm{~K}=1891=31 \times 61$
... 84-41 [43] 245 ... K=1931 (prime)
.. $83-40$ [43] 346 ... K=1969 = 11×179
.. 82 -39 [43] $447 \ldots$... K=2005 = 5×401
.. $80-37$ [43] $649 \ldots$ K=2071 = 19×109
... $79-36$ [43] $750 \ldots \mathrm{~K}=2101=11 \times 191$
.. 78 -35 [43] 851 ... K=2129 (prime)
.. $77-34$ [43] 952 ... K=2155 = 5×431
76-33 [43] 1053 ... K=2179 (prime)
75-32 [43] $1154 \ldots$... K=2201 = 31×71
.. 73 -30 [43] 1356 ... K=2239 (prime)
.. 72 -29 [43] 1457 ... K=2255 = $5 \times 11 \times 41$
.. 71-28 [43] 1558 ... K=2269 (prime)
.. 70-27 [43] 1659 ... K=2281 (prime)
$69-26[43] 1760 \ldots \mathrm{~K}=2291=29 \times 79$
... $67-24$ [43] $1962 \ldots \mathrm{~K}=2305=5 \times 461$
... 66-23 [43] 2063 ... K=2309 (prime)
... 65-22 [43] 2164 ... K=2311 (prime)
... $87-43$ [44] 145 ... K=1979 (prime)
... $85-41$ [44] $347 \ldots$ K=2059 = 29×71
... 83-39 [44] 549 ... K=2131 (prime)
$81-37$ [44] $751 \ldots \mathrm{~K}=2195=5 \times 439$
... 75-31 [44] 1357 ... K=2339 (prime)
... 73-29 [44] 1559 ... K=2371 (prime)
... $71-27$ [44] 1761 ... K=2395 = 5×479
.. 69-25 [44] 1963 ... K=2411 (prime)
.. $67-23[44] 2165 \ldots \mathrm{~K}=2419=41 \times 59$
89-44 [45] 146 ... K=2069 (prime)
... $86-41$ [45] 449 ... K=2189 = 11×199
... $83-38$ [45] $752 \ldots$ K=2291 = 29×79
... $82-37$ [45] 853 ... K=2321 = 11×211
... 79-34 [45] 1156 ... K=2399 (prime)
... 77-32 [45] 1358 ... K=2441 (prime)
... 76-31 [45] 1459 ... K=2459 (prime)
... 74 -29 [45] 1661 ... K=2489 = 19×131
... $73-28$ [45] $1762 \ldots \mathrm{~K}=2501=41 \times 61$
... 71 -26 [45] $1964 \ldots$ K=2519 = 11×229
... 68-23 [45] 2267 ... K=2531 (prime)
... $91-45$ [46] 147 ... K=2161 (prime)
... $89-43$ [46] $349 \ldots \mathrm{~K}=2245=5 \times 449$
... $87-41$ [46] 551 ... K=2321 = 11×211
... $85-39$ [46] 753 ... K=2389 (prime)
... 83-37 [46] $955 \ldots$ K=2449 = 31×79
... $81-35$ [46] $1157 \ldots \mathrm{~K}=2501=41 \times 61$
... $79-33$ [46] $1359 \ldots \mathrm{~K}=2545=5 \times 509$
... $77-31$ [46] $1561 \ldots \mathrm{~K}=2581=29 \times 89$
... 75-29 [46] 1763 ... K=2609 (prime)
... 73 -27 [46] 1965 ... K=2629 = 11×239
... 71 -25 [46] $2167 \ldots$ K=2641 = 19×139
... 93-46 [47] 148 ... K=2255 = $5 \times 11 \times 41$
... $92-45$ [47] $249 \ldots$ K=2299 = $11 \times 11 \times 19$
... 91 -44 [47] 350 ... K=2341 (prime)
... $90-43$ [47] 451 ... K=2381 (prime)
... $89-42$ [47] $552 \ldots \mathrm{~K}=2419=41 \times 59$
... 88-41 [47] 653 ... K=2455 = 5×491
... $87-40$ [47] 754 ... K=2489 = 19×131
... $86-39$ [47] 855 ... K=2521 (prime)
... $85-38$ [47] 956 ... K=2551 (prime)
... 84-37 [47] 1057 ... K=2579 (prime)
... $83-36$ [47] 1158 ... K=2605 = 5×521
... 82 -35 [47] $1259 \ldots$ K=2629 = 11×239
... $81-34$ [47] $1360 \ldots \mathrm{~K}=2651=11 \times 241$
... 80-33 [47] 1461 ... K=2671 (prime)
... 79-32 [47] $1562 \ldots$ K=2689 (prime)
... 78 -31 [47] 1663 ... K=2705 = 5×541
... 77-30 [47] 1764 ... K=2719 (prime)
... 76-29 [47] 1865 ... K=2731 (prime)
... 75 -28 [47] 1966 ... K=2741 (prime)
... 74-27 [47] 2067 ... K=2749 (prime)
... 73 -26 [47] 2168 ... K=2755 = $5 \times 19 \times 29$
... $72-25$ [47] $2269 \ldots \mathrm{~K}=2759=31 \times 89$
... $71-24$ [47] $2370 \ldots$ K=2761 = 11×251
... $95-47$ [48] 149 ... K=2351 (prime)
... $91-43$ [48] 553 ... K=2519 = 11×229
... $89-41$ [48] 755 ... K=2591 (prime)
... 85 -37 [48] 1159 ... K=2711 (prime)
... $83-35$ [48] $1361 \ldots \mathrm{~K}=2759=31 \times 89$
... $79-31$ [48] $1765 \ldots \mathrm{~K}=2831=19 \times 149$
... $77-29$ [48] $1967 \ldots$ K=2855 = 5×571
... 73-25 [48] 2371 ... K=2879 (prime)
... 97-48 [49] $150 \ldots \mathrm{~K}=2449=31 \times 79$
... 96-47 [49] $251 \ldots$ K=2495 = 5×499
... $95-46$ [49] 352 ... K=2539 (prime)
... 94-45 [49] $453 \ldots$ K=2581 = 29×89
... 93-44 [49] $554 \ldots$... K=2621 (prime)
... 92-43 [49] 655 ... K=2659 (prime)
... $90-41$ [49] 857 ... K=2729 (prime)

... $89-40$ [49] 958 ... K=2761 = 11×251
... 88-39 [49] 1059 ... K=2791 (prime)
... 87 -38 [49] 1160 ... K=2819 (prime)
... $86-37$ [49] $1261 \ldots$... K=2845 = 5×569
... $85-36$ [49] $1362 \ldots$ K=2869 = 19×151
... $82-33$ [49] $1665 \ldots$ K=2929 $=29 \times 101$
... $81-32$ [49] $1766 \ldots$ K=2945 $=5 \times 19 \times 31$
... $80-31$ [49] 1867 ... K=2959 = 11×269
... 79-30 [49] 1968 ... K=2971 (prime)
... 78-29 [49] 2069 ... K=2981 = 11×271
... $76-27$ [49] 2271 ... K=2995 = 5×599
K=2gog (prime)
... 99-49 [50] 151 ... K=2549 (prime)
... $97-47$ [50] 353 ... K=2641 = 19×139
... 93-43 [50] 757 ... K=2801 (prime)
... 91 -41 [50] 959 ... K=2869 = 19×151
... 89 -39 [50] 1161 ... K=2929 = 29×101
... 83-33 [50] 1767 ... K=3061 (prime)
... 81-31 [50] 1969 ... K=3089 (prime)
... 79-29 [50] 2171 ... K=3109 (prime)
... 77-27 [50] 2373 ... K=3121 (prime)
... $101-50$ [51] $152 \ldots$ K=2651 = 11×241
... 100-49 [51] 253 ... K=2699 (prime)
... 98-47 [51] 455 ... K=2789 (prime)
... $97-46$ [51] 556 ... K=2831 = 19×149
... 95-44 [51] 758 ... K=2909 (prime)
... $94-43$ [51] $859 \ldots \mathrm{~K}=2945=5 \times 19 \times 31$
... $92-41$ [51] 1061 ... K=3011 (prime)
... $91-40$ [51] 1162 ... K=3041 (prime)
... $89-38$ [51] $1364 \ldots$... K=3095 = 5×619
... 88 -37 [51] 1465 ... K=3119 (prime)
... 86 -35 [51] 1667 ... K=3161 = 29×109
... 83 -32 [51] 1970 ... K=3209 (prime)
... 82 -31 [51] 2071 ... K=3221 (prime)
... $80-29$ [51] 2273 ... K=3239 $=41 \times 79$
... $79-28$ [51] $2374 \ldots$ K=3245 = $5 \times 11 \times 59$
... 77-26 [51] 2576 ... K=3251 (prime)
... 103 -51[52] $153 \ldots$ K=2755 = $5 \times 19 \times 29$
... 101-49 [52] 355 ... K=2851 (prime)
... 99-47 [52] 557 ... K=2939 (prime)
... $97-45$ [52] 759 ... K=3019 (prime)
... $95-43$ [52] 961 ... K=3091 = 11×281
... $93-41$ [52] 1163 ... K=3155 = 5×631
... 89-37 [52] 15 67 ... K=3259 (prime)
... 87-35 [52] 1769 ... K=3299 (prime)
... 85-33 [52] 1971 ... K=3331 (prime)
... $83-31$ [52] $2173 \ldots \mathrm{~K}=3355=5 \times 11 \times 61$
... 81-29 [52] 2375 ... K=3371 (prime)
... $79-27$ [52] 2577 ... K=3379 = 31×109
... 105-52 [53] 154 ... K=2861 (prime)
... 104-51 [53] 255 ... K=2911 = 41×71
... 103-50 [53] $356 \ldots$... K=2959 = 11×269
... 101-48 [53] 558 ... K=3049 (prime)
... 100-47 [53] 659 ... K=3091 = 11×281
... $99-46$ [53] 760 ... K=3131 = 31×101
... $98-45$ [53] 861 ... K=3169 (prime)
... $97-44$ [53] $962 \ldots$ K=3205 $=5 \times 641$
... $96-43$ [53] $1063 \ldots \mathrm{~K}=3239=41 \times 79$
... 95-42 [53] 1164 ... K=3271 (prime)
... 94-41 [53] 1265 ... K=3301 (prime)
... 93-40 [53] 1366 ... K=3329 (prime)
... 92 -39 [53] 1467 ... K=3355 = $5 \times 11 \times 61$
... $91-38$ [53] $1568 \ldots \mathrm{~K}=3379=31 \times 109$
... 90-37 [53] $1669 \ldots$ K=3401 $=19 \times 179$
... $89-36$ [53] $1770 \ldots$ K=3421 $=11 \times 311$
... $88-35$ [53] $1871 \ldots$ K=3439 = 19×181
... $87-34$ [53] $1972 \ldots$ K=3455 $=5 \times 691$
... 86-33 [53] 2073 ... K=3469 (prime)
... $85-32$ [53] $2174 \ldots \mathrm{~K}=3481=59 \times 59$
... 84-31 [53] 2275 ... K=3491 (prime)
... 83-30 [53] 2376 ... K=3499 (prime)
... $82-29$ [53] $2477 \ldots \mathrm{~K}=3505=5 \times 701$
... $81-28$ [53] $2578 \ldots \mathrm{~K}=3509=11 \times 11 \times 29$
... 80-27 [53] 2679 ... K=3511 (prime)
... 107-53 [54] 155 ... K=2969 (prime)
... 103-49 [54] 559 ... K=3161 = 29×109
... $101-47$ [54] $761 \ldots$ K=3245 = $5 \times 11 \times 59$
... 97-43 [54] 1165 ... K=3389 (prime)
... 95-41 [54] 1367 ... K=3449 (prime)
... $91-37$ [54] $1771 \ldots$ K=3545 = 5×709
... 89-35 [54] 1973 ... K=3581 (prime)
... 85 -31 [54] 2377 ... K=3629 = 19×191
... 83-29 [54] 2579 ... K=3641 = 11×331
... 109-54 [55] 156 ... K=3079 (prime)
... 108-53 [55] 257 ... K=3131 = 31×101
... 107-52 [55] 358 ... K=3181 (prime)
... 106-51 [55] 459 ... K=3229 (prime)
... 104-49 [55] 661 ... K=3319 (prime)
... 103-48 [55] 762 ... K=3361 (prime)
... 102-47 [55] 863 ... K=3401 = 19×179
... 101 -46 [55] $964 \ldots$ K=3439 = 19×181
... 98-43 [55] 1267 ... K=3541 (prime)
... 97-42 [55] 1368 ... K=3571 (prime)
... $96-41$ [55] $1469 \ldots \mathrm{~K}=3599=59 \times 61$
... $94-39$ [55] 1671 ... K=3649 $=41 \times 89$
... 93-38 [55] 1772 ... K=3671 (prime)
... 92-37 [55] 1873 ... K=3691 (prime)
... 91 -36 [55] 1974 ... K=3709 (prime)
... 89 -34 [55] 2176 ... K=3739 (prime)
... 87-32 [55] 2378 ... K=3761 (prime)
... 86-31 [55] 2479 ... K=3769 (prime)
... 84-29 [55] 2681 ... K=3779 (prime)
... $83-28$ [55] $2782 \ldots$ K=3781 $=19 \times 199$
... 111-55 [56] 157 ... K=3191 (prime)
... 109-53 [56] $359 \ldots \mathrm{~K}=3295=5 \times 659$
... 107-51 [56] 561 ... K=3391 (prime)
... 103-47 [56] 965 ... K=3559 (prime)
... 101-45 [56] 1167 ... K=3631 (prime)
... $99-43$ [56] 1369 ... K=3695 $=5 \times 739$

Appendix B

Factorisation of Cassini Constants

This is a list of Cassini constants in numerical order and, if not prime, their breakdown into the first prime factor (and its power) and the quotient (if any). As per Conjecture 2a, both the first factor and the quotient should appear as a constant earlier in the list, enabling a complete factorisation into primes.

1
5 is prime
11 is prime
19 is prime
29 is prime
31 is prime
41 is prime
$55=5 \times 11$
59 is prime
61 is prime
71 is prime
79 is prime
89 is prime
$95=5 \times 19$
101 is prime
109 is prime
$121=11^{\wedge} 2$
131 is prime
139 is prime
$145=5 \times 29$
149 is prime
151 is prime
$155=5 \times 31$
179 is prime
181 is prime
191 is prime
199 is prime
$205=5 \times 41$
$209=11 \times 19$
211 is prime
229 is prime
239 is prime
241 is prime
251 is prime
269 is prime
271 is prime
281 is prime
$295=5 \times 59$
$305=5 \times 61$
311 is prime
$319=11 \times 29$
331 is prime
$341=11 \times 31$
349 is prime
$355=5 \times 71$
359 is prime
$361=19^{\wedge} 2$
379 is prime
389 is prime
$395=5 \times 79$
401 is prime
409 is prime
419 is prime
421 is prime
431 is prime
439 is prime
$445=5 \times 89$
449 is prime
$451=11 \times 41$
461 is prime
479 is prime
491 is prime
499 is prime
$505=5 \times 101$
509 is prime
521 is prime
541 is prime
$545=5 \times 109$
$551=19 \times 29$
569 is prime
571 is prime
$589=19 \times 31$
599 is prime
601 is prime
$605=5 \times 121$
619 is prime
631 is prime
641 is prime
$649=11 \times 59$
$655=5 \times 131$
659 is prime
661 is prime
$671=11 \times 61$
691 is prime

$695=5 \times 139$	$1055=5 \times 211$
701 is prime	1061 is prime
709 is prime	1069 is prime
719 is prime	1091 is prime
739 is prime	1109 is prime
$745=5 \times 149$	$1111=11 \times 101$
751 is prime	$1121=19 \times 59$
$755=5 \times 151$	1129 is prime
761 is prime	$1145=5 \times 229$
769 is prime	1151 is prime
$779=19 \times 41$	$1159=19 \times 61$
$781=11 \times 71$	1171 is prime
809 is prime	1181 is prime
811 is prime	$1189=29 \times 41$
821 is prime	$1195=5 \times 239$
829 is prime	$1199=11 \times 109$
839 is prime	1201 is prime
$841=29 \wedge 2$	$1205=5 \times 241$
859 is prime	1229 is prime
869 = 11×79	1231 is prime
881 is prime	1249 is prime
$895=5 \times 179$	1255 = 5×251
$899=29 \times 31$	1259 is prime
$905=5 \times 181$	1271 = 31×41
911 is prime	1279 is prime
919 is prime	1289 is prime
929 is prime	1291 is prime
941 is prime	1301 is prime
$955=5 \times 191$	1319 is prime
961 = 31^2	1321 is prime
971 is prime	$1331=11^{\wedge} 3$
$979=11 \times 89$	$1345=5 \times 269$
991 is prime	$1349=19 \times 71$
$995=5 \times 199$	$1355=5 \times 271$
1009 is prime	1361 is prime
1019 is prime	1381 is prime
1021 is prime	1399 is prime
1031 is prime	$1405=5 \times 281$
1039 is prime	1409 is prime
$1045=5 \times 209$	1429 is prime
1049 is prime	1439 is prime
1051 is prime	1441 = 11×131

$1055=5 \times 211$
1061 is prime
1069 is prime
1091 is prime
1109 is prime
$1121=19 \times 59$
1129 is prime
$1145=5 \times 229$
1151 is prime
$1159=19 \times 61$
1171 is prime
1181 is prime
$1189=29 \times 41$
$1195=5 \times 239$
$1199=11 \times 109$
1201 is prime
$1205=5 \times 241$
1229 is prime
1231 is prime
1249 is prime
$1255=5 \times 251$
1259 is prime
$1271=31 \times 41$
1279 is prime
1289 is prime
1291 is prime
1301 is prime
1319 is prime
1321 is prime
$1331=11^{\wedge} 3$
$1345=5 \times 269$
$1349=19 \times 71$
$1355=5 \times 271$
1361 is prime
1381 is prime
$1405=5 \times 281$
1409 is prime
1429 is prime
$1441=11 \times 131$

1451 is prime	1951 is prime	$2449=31 \times 79$	2969 is prime
1459 is prime	$1969=11 \times 179$	$2455=5 \times 491$	2971 is prime
1471 is prime	1979 is prime	2459 is prime	$2981=11 \times 271$
1481 is prime	1991 = 11×181	$2489=19 \times 131$	$2995=5 \times 599$
1489 is prime	1999 is prime	$2495=5 \times 499$	2999 is prime
1499 is prime	$2005=5 \times 401$	$2501=41 \times 61$	3001 is prime
1501 = 19×79	2011 is prime	$2519=11 \times 229$	$3005=5 \times 601$
1511 is prime	2029 is prime	2521 is prime	3011 is prime
$1529=11 \times 139$	2039 is prime	2531 is prime	3019 is prime
1531 is prime	$2045=5 \times 409$	2539 is prime	3041 is prime
1549 is prime	$2059=29 \times 71$	$2545=5 \times 509$	3049 is prime
$1555=5 \times 311$	2069 is prime	2549 is prime	3061 is prime
1559 is prime	$2071=19 \times 109$	2551 is prime	3079 is prime
1571 is prime	2081 is prime	2579 is prime	3089 is prime
1579 is prime	2089 is prime	$2581=29 \times 89$	$3091=11 \times 281$
$1595=5 \times 319$	$2095=5 \times 419$	2591 is prime	$3095=5 \times 619$
1601 is prime	2099 is prime	$2605=5 \times 521$	3109 is prime
1609 is prime	$2101=11 \times 191$	2609 is prime	3119 is prime
1619 is prime	$2105=5 \times 421$	2621 is prime	3121 is prime
1621 is prime	2111 is prime	$2629=11 \times 239$	$3131=31 \times 101$
$1639=11 \times 149$	2129 is prime	$2641=19 \times 139$	$3155=5 \times 631$
$1655=5 \times 331$	2131 is prime	$2651=11 \times 241$	$3161=29 \times 109$
$1661=11 \times 151$	2141 is prime	2659 is prime	3169 is prime
1669 is prime	$2155=5 \times 431$	2671 is prime	3181 is prime
1681 = 41^2	2161 is prime	2689 is prime	3191 is prime
$1691=19 \times 89$	2179 is prime	2699 is prime	$3205=5 \times 641$
1699 is prime	$2189=11 \times 199$	$2705=5 \times 541$	3209 is prime
$1705=5 \times 341$	$2195=5 \times 439$	2711 is prime	3221 is prime
1709 is prime	$2201=31 \times 71$	2719 is prime	3229 is prime
$1711=29 \times 59$	2221 is prime	2729 is prime	$3239=41 \times 79$
1721 is prime	2239 is prime	2731 is prime	$3245=5 \times 649$
1741 is prime	$2245=5 \times 449$	2741 is prime	3251 is prime
$1745=5 \times 349$	2251 is prime	2749 is prime	3259 is prime
1759 is prime	$2255=5 \times 451$	$2755=5 \times 551$	3271 is prime
1769 = 29×61	2269 is prime	$2759=31 \times 89$	$3295=5 \times 659$
1789 is prime	2281 is prime	$2761=11 \times 251$	3299 is prime
$1795=5 \times 359$	$2291=29 \times 79$	2789 is prime	3301 is prime
1801 is prime	2299 = 11^2 $\times 19$	2791 is prime	$3305=5 \times 661$
$1805=5 \times 361$	$2305=5 \times 461$	2801 is prime	3319 is prime
1811 is prime	2309 is prime	2819 is prime	3329 is prime
$1829=31 \times 59$	2311 is prime	$2831=19 \times 149$	3331 is prime
1831 is prime	$2321=11 \times 211$	$2845=5 \times 569$	$3355=5 \times 671$
1861 is prime	2339 is prime	2851 is prime	3359 is prime
1871 is prime	2341 is prime	$2855=5 \times 571$	3361 is prime
1879 is prime	2351 is prime	2861 is prime	3371 is prime
1889 is prime	2371 is prime	2869 = 19×151	$3379=31 \times 109$
$1891=31 \times 61$	2381 is prime	2879 is prime	3389 is prime
$1895=5 \times 379$	2389 is prime	2909 is prime	3391 is prime
1901 is prime	$2395=5 \times 479$	$2911=41 \times 71$	$3401=19 \times 179$
$1919=19 \times 101$	2399 is prime	$2929=29 \times 101$	$3421=11 \times 311$
1931 is prime	2411 is prime	2939 is prime	$3439=19 \times 181$
$1945=5 \times 389$	$2419=41 \times 59$	$2945=5 \times 589$	3449 is prime
1949 is prime	2441 is prime	$2959=11 \times 269$	$3455=5 \times 691$

3461 is prime
3469 is prime
$3481=59^{\wedge} 2$
3491 is prime
3499 is prime
$3505=5 \times 701$
$3509=11^{\wedge} 2 \times 29$
3511 is prime
3529 is prime
3539 is prime
3541 is prime
$3545=5 \times 709$
3559 is prime
3571 is prime
3581 is prime
$3595=5 \times 719$
$3599=59 \times 61$
$3629=19 \times 191$
3631 is prime
$3641=11 \times 331$
$3649=41 \times 89$
3659 is prime
3671 is prime
3691 is prime
$3695=5 \times 739$
3701 is prime
3709 is prime
3719 is prime
$3721=61^{\wedge} 2$
3739 is prime
$3751=11^{\wedge} 2 \times 31$
$3755=5 \times 751$
3761 is prime
3769 is prime
3779 is prime
$3781=19 \times 199$
$3799=29 \times 131$
$3805=5 \times 761$
3821 is prime
$3839=11 \times 349$
$3845=5 \times 769$
3851 is prime
3881 is prime
3889 is prime
$3895=5 \times 779$
$3905=5 \times 781$
3911 is prime
3919 is prime
3929 is prime
3931 is prime
$3949=11 \times 359$
$3971=11 \times 361$
3989 is prime

4001 is prime
$4009=19 \times 211$
4019 is prime
4021 is prime
$4031=29 \times 139$
$4045=5 \times 809$
4049 is prime
4051 is prime
$4055=5 \times 811$
$4061=31 \times 131$
4079 is prime
4091 is prime
4099 is prime
$4105=5 \times 821$
4111 is prime
4129 is prime
4139 is prime
$4141=41 \times 101$
$4145=5 \times 829$
4159 is prime
$4169=11 \times 379$
$4189=59 \times 71$
$4195=5 \times 839$
4201 is prime
$4205=5 \times 841$
4211 is prime
4219 is prime
4229 is prime
4231 is prime
4241 is prime
4259 is prime
4261 is prime
4271 is prime
$4279=11 \times 389$
4289 is prime
$4295=5 \times 859$
$4309=31 \times 139$
$4321=29 \times 149$
$4331=61 \times 71$
4339 is prime
$4345=5 \times 869$
4349 is prime
$4351=19 \times 229$
$4379=29 \times 151$
4391 is prime
$4405=5 \times 881$
4409 is prime
$4411=11 \times 401$
4421 is prime
4441 is prime
4451 is prime
$4469=41 \times 109$
4481 is prime
$4495=5 \times 899$
$4499=11 \times 409$
4519 is prime
$4541=19 \times 239$
4549 is prime
$4555=5 \times 911$
4561 is prime
$4579=19 \times 241$
4591 is prime
$4595=5 \times 919$
$4609=11 \times 419$
$4619=31 \times 149$
4621 is prime
$4631=11 \times 421$
4639 is prime
$4645=5 \times 929$
4649 is prime
4651 is prime
$4661=59 \times 79$
4679 is prime
$4681=31 \times 151$
4691 is prime
$4705=5 \times 941$
4721 is prime
4729 is prime
$4741=11 \times 431$
4751 is prime
4759 is prime
$4769=19 \times 251$
4789 is prime
4799 is prime
4801 is prime
$4805=5 \times 961$
$4819=61 \times 79$
$4829=11 \times 439$
4831 is prime
$4855=5 \times 971$
4861 is prime
4871 is prime
4889 is prime
$4895=5 \times 979$
4909 is prime
4919 is prime
4931 is prime
$4939=11 \times 449$
4951 is prime
$4955=5 \times 991$
$4961=11^{\wedge} 2 \times 41$
4969 is prime
4999 is prime
5009 is prime
5011 is prime
5021 is prime

5039 is prime
$5041=71^{\wedge} 2$
$5045=5 \times 1009$
5051 is prime
5059 is prime
$5071=11 \times 461$
5081 is prime
$5095=5 \times 1019$
5099 is prime
5101 is prime
$5105=5 \times 1021$
$5111=19 \times 269$
5119 is prime
$5149=19 \times 271$
$5155=5 \times 1031$
5171 is prime
5179 is prime
5189 is prime
$5191=29 \times 179$
$5195=5 \times 1039$
5209 is prime
5231 is prime
$5245=5 \times 1049$
$5249=29 \times 181$
$5251=59 \times 89$
$5255=5 \times 1051$
5261 is prime
$5269=11 \times 479$
5279 is prime
5281 is prime
$5305=5 \times 1061$
5309 is prime
$5339=19 \times 281$
$5345=5 \times 1069$
5351 is prime
$5371=41 \times 131$
5381 is prime
5399 is prime
$5401=11 \times 491$
5419 is prime
$5429=61 \times 89$
5431 is prime
5441 is prime
5449 is prime
$5455=5 \times 1091$
5471 is prime
5479 is prime
$5489=11 \times 499$
5501 is prime
5519 is prime
5521 is prime
5531 is prime
$5539=29 \times 191$
$5545=5 \times 1109$
$5549=31 \times 179$
$5555=5 \times 1111$
5569 is prime
5581 is prime
5591 is prime
$5599=11 \times 509$
$5605=5 \times 1121$
$5609=71 \times 79$
$5611=31 \times 181$
5639 is prime
5641 is prime
$5645=5 \times 1129$
5651 is prime
5659 is prime
5669 is prime
5689 is prime
$5699=41 \times 139$
5701 is prime
5711 is prime
$5731=11 \times 521$
5741 is prime
5749 is prime
$5755=5 \times 1151$
$5771=29 \times 199$
5779 is prime
5791 is prime
$5795=5 \times 1159$
5801 is prime
5821 is prime
5839 is prime
5849 is prime
5851 is prime
$5855=5 \times 1171$
5861 is prime
5869 is prime
5879 is prime
5881 is prime
$5905=5 \times 1181$
$5909=19 \times 311$
$5921=31 \times 191$
5939 is prime
$5945=5 \times 1189$
$5951=11 \times 541$
$5959=59 \times 101$
5981 is prime
$5995=5 \times 1199$
$6005=5 \times 1201$
6011 is prime
6029 is prime
$6061=11 \times 551$
6079 is prime
6089 is prime

6091 is prime
6101 is prime
$6109=41 \times 149$
$6119=29 \times 211$
6121 is prime
6131 is prime
$6145=5 \times 1229$
6151 is prime
$6155=5 \times 1231$
$6161=61 \times 101$
$6169=31 \times 199$
$6191=41 \times 151$
6199 is prime
6211 is prime
6221 is prime
6229 is prime
$6241=79^{\wedge} 2$
$6245=5 \times 1249$
$6259=11 \times 569$
6269 is prime
6271 is prime
$6281=11 \times 571$
$6289=19 \times 331$
$6295=5 \times 1259$
6299 is prime
6301 is prime
6311 is prime
$6319=71 \times 89$
6329 is prime
$6355=5 \times 1271$
6359 is prime
6361 is prime
6379 is prime
6389 is prime
$6395=5 \times 1279$
6421 is prime
$6431=59 \times 109$
$6445=5 \times 1289$
6449 is prime
6451 is prime
$6455=5 \times 1291$
6469 is prime
$6479=11 \times 589$
6481 is prime
6491 is prime
$6505=5 \times 1301$
6521 is prime
6529 is prime
$6541=31 \times 211$
6551 is prime
6569 is prime
6571 is prime
6581 is prime
$6589=11 \times 599$
$6595=5 \times 1319$
6599 is prime
$6605=5 \times 1321$
$6611=11 \times 601$
6619 is prime
$6631=19 \times 349$
$6641=29 \times 229$
$6649=61 \times 109$
$6655=5 \times 1331$
6659 is prime
6661 is prime
6679 is prime
6689 is prime
6691 is prime
6701 is prime
6709 is prime
6719 is prime
$6745=5 \times 1349$
6761 is prime
6779 is prime
6781 is prime
6791 is prime
$6805=5 \times 1361$
$6809=11 \times 619$
$6821=19 \times 359$
6829 is prime
6841 is prime
$6859=19^{\wedge} 3$
6869 is prime
6871 is prime
6899 is prime
$6905=5 \times 1381$
6911 is prime
$6931=29 \times 239$
$6941=11 \times 631$
6949 is prime
6959 is prime
6961 is prime
6971 is prime
$6989=29 \times 241$
6991 is prime
$6995=5 \times 1399$
7001 is prime
7019 is prime
$7031=79 \times 89$
7039 is prime
$7045=5 \times 1409$
$7051=11 \times 641$
7069 is prime
7079 is prime
$7099=31 \times 229$
7109 is prime

7121 is prime
7129 is prime
$7139=11^{\wedge} 2 \times 59$
$7145=5 \times 1429$
7151 is prime
7159 is prime
$7171=71 \times 101$
$7195=5 \times 1439$
$7201=19 \times 379$
$7205=5 \times 1441$
7211 is prime
7219 is prime
7229 is prime
$7249=11 \times 659$
$7255=5 \times 1451$
$7271=11 \times 661$
$7279=29 \times 251$
$7295=5 \times 1459$
7309 is prime
7321 is prime
7331 is prime
$7339=41 \times 179$
7349 is prime
7351 is prime
$7355=5 \times 1471$
7369 is prime
$7381=11^{\wedge} 2 \times 61$
$7391=19 \times 389$
$7405=5 \times 1481$
$7409=31 \times 239$
7411 is prime
$7421=41 \times 181$
$7445=5 \times 1489$
7451 is prime
7459 is prime
$7471=31 \times 241$
7481 is prime
7489 is prime
$7495=5 \times 1499$
7499 is prime $7505=5 \times 1501$
7529 is prime
7541 is prime
7549 is prime
$7555=5 \times 1511$
7559 is prime
7561 is prime 7589 is prime 7591 is prime
$7601=11 \times 691$
$7619=19 \times 401$
7621 is prime

Appendix C

Examples of Sequences Products

Here is a list of sequence products $(p, q) \times(r, s)$ for relatively prime sequences, where $p>q$ (the complements rule can be used to obtain products for $p<q$). They are shown in ascending order of $\mathrm{N}=\mathrm{p}+\mathrm{q}+\mathrm{r}+\mathrm{s}$; within that in descending order of $p+q$ not less than $r+s$; then in descending order of p not less than q; and then all r, s in pairs (r, s) and (s, r) in descending order of r.
Where $p+q=r+s$ we eliminate duplicates caused by $p<r$ (commutative) or $p<s$ (complementary). Where the resulting roots are not relatively prime, the relevant multiple is also shown, e.g. $K_{x, y}:(p, q) \times(r, s)=(x, y)=\lambda(u, v)$.
For each value of N, K has bounds: $5\left((N-2)^{2}\right)<K<\left(25 N^{4}\right) / 256<\left(N^{4}\right) / 10$.
For example, for $N=100$ the actual limits are 48,505 <= K <= 9,740,641.

```
####### N = 4 #####################
    25:(1,1) x (1,1) = (5,0) = 5 (1,0)
####### N = 5 #####################
    55:(2,1) x (1,1) = (1,6)
####### N = 6 #####################
    95:(3,1) x (1,1) = (2,7)
    121:(2,1) x (2,1)=(3,7)
    121:(2,1)\times(1,2)=(11,0)=11(1,0)
####### N = 7 #####################
    145:(4,1) x (1,1) = (3,8)
    155:(3,2)\times(1,1)=(1,11)
    209:(3,1) x (2,1)=(5,8)
    209:(3,1) x (1,2)=(1,13)
####### N = 8 #####################
    205:(5,1) x (1,1) = (4,9)
    319:(4,1)\times(2,1)=(7,9)
    319:(4,1)\times(1,2)=(2,15)
    341:(3,2)\times(2,1)=(4,13)
    341:(3,2) x (1,2)=(17,1)
    361:(3,1) x (3,1)=(8,9)
    361:(3,1) x (1,3)=(19,0) = 19(1,0)
####### N = 9 #####################
    275:(6,1) x (1,1) = (5,10)=5(1,2)
    295:(5,2) x (1,1)=(3,13)
    305:(4,3)\times(1,1)=(1,16)
    451:(5,1) x (2,1)=(9,10)
    451:(5,1) x (1,2)=(3,17)
    551:(4,1)\times(3,1)=(11,10)
    551:(4,1) \times (1,3)=(1,22)
    589:(3,2) x (3,1)=(7,15)
    589:(3,2) x (1,3)=(20,3)
####### N = 10 #####################
    355:(7,1) x (1,1) = (6,11)
    395:(5,3) x (1,1)=(2,17)
```


\#\#\#\#\#\#\# $\mathrm{N}=4$ \#

$25:(1,1) \times(1,1)=(5,0)=5(1,0)$
\#\#\#\#\#\#\# $\mathrm{N}=5$ \# $55:(2,1) \times(1,1)=(1,6)$
\#\#\#\#\#\#\# $\mathrm{N}=6$ \#
$95:(3,1) \times(1,1)=(2,7)$
121 : $(2,1) \times(2,1)=(3,7)$
$121:(2,1) \times(1,2)=(11,0)=11(1,0)$
\#\#\#\#\#\#\# $\mathrm{N}=7$ \#
$145:(4,1) \times(1,1)=(3,8)$
$155:(3,2) \times(1,1)=(1,11)$
$209:(3,1) \times(2,1)=(5,8)$
209 : $(3,1) \times(1,2)=(1,13)$
\#\#\#\#\#\#\# $\mathrm{N}=8$ \#
$205:(5,1) \times(1,1)=(4,9)$
$319:(4,1) \times(2,1)=(7,9)$
$319:(4,1) \times(1,2)=(2,15)$
$341:(3,2) \times(2,1)=(4,13)$
341 : $(3,2) \times(1,2)=(17,1)$
$361:(3,1) \times(3,1)=(8,9)$
$361:(3,1) \times(1,3)=(19,0)=19(1,0)$
\#\#\#\#\#\#\# $\mathrm{N}=9$ \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
$275:(6,1) \times(1,1)=(5,10)=5(1,2)$
$295:(5,2) \times(1,1)=(3,13)$
$305:(4,3) \times(1,1)=(1,16)$
451 : $(5,1) \times(2,1)=(9,10)$
$451:(5,1) \times(1,2)=(3,17)$
$551:(4,1) \times(3,1)=(11,10)$
$551:(4,1) \times(1,3)=(1,22)$
589 : $(3,2) \times(3,1)=(7,15)$
$589:(3,2) \times(1,3)=(20,3)$
\#\#\#\#\#\#\# N = 10 \#
$355:(7,1) \times(1,1)=(6,11)$
395 : $(5,3) \times(1,1)=(2,17)$

```
\(605:(6,1) \times(2,1)=(11,11)=11(1,1)\)
\(605:(6,1) \times(1,2)=(4,19)\)
649 : \((5,2) \times(2,1)=(8,15)\)
649 : \((5,2) \times(1,2)=(1,24)\)
671 : \((4,3) \times(2,1)=(5,19)\)
671 : \((4,3) \times(1,2)=(23,2)\)
\(779:(5,1) \times(3,1)=(14,11)\)
779 : \((5,1) \times(1,3)=(2,25)\)
841 : \((4,1) \times(4,1)=(15,11)\)
\(841:(4,1) \times(1,4)=(29,0)=29(1,0)\)
\(899:(4,1) \times(3,2)=(10,17)\)
899 : \((4,1) \times(2,3)=(5,23)\)
961 : \((3,2) \times(3,2)=(5,24)\)
\(961:(3,2) \times(2,3)=(31,0)=31(1,0)\)
```

\#\#\#\#\#\#\# N = 11 \#
$445:(8,1) \times(1,1)=(7,12)$
$475:(7,2) \times(1,1)=(5,15)=5(1,3)$
$505:(5,4) \times(1,1)=(1,21)$
$781:(7,1) \times(2,1)=(13,12)$
$781:(7,1) \times(1,2)=(5,21)$
869 : $(5,3) \times(2,1)=(7,20)$
$869:(5,3) \times(1,2)=(28,1)$
$1045:(6,1) \times(3,1)=(17,12)$
$1045:(6,1) \times(1,3)=(3,28)$
1121 : $(5,2) \times(3,1)=(13,17)$
1121 : $(5,2) \times(1,3)=(32,1)$
$1159:(4,3) \times(3,1)=(9,22)$
1159 : $(4,3) \times(1,3)=(27,5)$
1189 : $(5,1) \times(4,1)=(19,12)$
$1189:(5,1) \times(1,4)=(1,33)$
1271 : $(5,1) \times(3,2)=(13,19)$
$1271:(5,1) \times(2,3)=(7,26)$
\#\#\#\#\#\#\# N = 12 \#
$545:(9,1) \times(1,1)=(8,13)$
$605:(7,3) \times(1,1)=(4,19)$
$979:(8,1) \times(2,1)=(15,13)$
979 : $(8,1) \times(1,2)=(6,23)$
$1045:(7,2) \times(2,1)=(12,17)$
$1045:(7,2) \times(1,2)=(3,28)$
1111 : $(5,4) \times(2,1)=(6,25)$
1111 : $(5,4) \times(1,2)=(29,3)$
1349 : $(7,1) \times(3,1)=(20,13)$
1349 : $(7,1) \times(1,3)=(4,31)$
1501 : $(5,3) \times(3,1)=(12,23)$
1501 : $(5,3) \times(1,3)=(33,4)$
1595 : $(6,1) \times(4,1)=(23,13)$
1595 : $(6,1) \times(1,4)=(2,37)$
$1705:(6,1) \times(3,2)=(16,21)$
$1705:(6,1) \times(2,3)=(9,29)$
1711 : $(5,2) \times(4,1)=(18,19)$
1711 : $(5,2) \times(1,4)=(37,3)$
1829 : $(5,2) \times(3,2)=(11,28)$
$1829:(5,2) \times(2,3)=(4,37)$
1769 : $(4,3) \times(4,1)=(13,25)$
1769 : $(4,3) \times(1,4)=(31,8)$
1891 : $(4,3) \times(3,2)=(6,35)$
1891 : $(4,3) \times(2,3)=(42,1)$
1681 : $(5,1) \times(5,1)=(24,13)$
$1681:(5,1) \times(1,5)=(41,0)=41(1,0)$
\#\#\#\#\#\#\# $\mathrm{N}=13$ \#
$655:(10,1) \times(1,1)=(9,14)$
$695:(9,2) \times(1,1)=(7,17)$
$725:(8,3) \times(1,1)=(5,20)=5(1,4)$
$745:(7,4) \times(1,1)=(3,23)$
755 : $(6,5) \times(1,1)=(1,26)$
1199 : $(9,1) \times(2,1)=(17,14)$
1199 : $(9,1) \times(1,2)=(7,25)$
$1331:(7,3) \times(2,1)=(11,22)=11(1,2)$
1331 : $(7,3) \times(1,2)=(1,35)$
1691 : $(8,1) \times(3,1)=(23,14)$
1691 : $(8,1) \times(1,3)=(5,34)$
$1805:(7,2) \times(3,1)=(19,19)=19(1,1)$
1805 : $(7,2) \times(1,3)=(1,41)$
1919 : $(5,4) \times(3,1)=(11,29)$
1919 : $(5,4) \times(1,3)=(34,7)$
2059 : $(7,1) \times(4,1)=(27,14)$
2059 : $(7,1) \times(1,4)=(3,41)$
2201 : $(7,1) \times(3,2)=(19,23)$
2201 : $(7,1) \times(2,3)=(11,32)$
2291 : $(5,3) \times(4,1)=(17,26)$
2291 : $(5,3) \times(1,4)=(38,7)$
2449 : $(5,3) \times(3,2)=(9,37)$
2449 : $(5,3) \times(2,3)=(1,48)$
2255 : $(6,1) \times(5,1)=(29,14)$
$2255:(6,1) \times(1,5)=(1,46)$
2419 : $(5,2) \times(5,1)=(23,21)$
2419 : $(5,2) \times(1,5)=(42,5)$

2501 : $(4,3) \times(5,1)=(17,28)$
2501 : $(4,3) \times(1,5)=(35,11)$
\#\#\#\#\#\#\# $\mathrm{N}=14$ \#
$775:(11,1) \times(1,1)=(10,15)=5(2,3)$
895 : $(7,5) \times(1,1)=(2,27)$
$1441:(10,1) \times(2,1)=(19,15)$
1441 : $(10,1) \times(1,2)=(8,27)$
1529 : $(9,2) \times(2,1)=(16,19)$
1529 : $(9,2) \times(1,2)=(5,32)$
1595 : $(8,3) \times(2,1)=(13,23)$
1595 : $(8,3) \times(1,2)=(2,37)$
1639 : $(7,4) \times(2,1)=(10,27)$
1639 : $(7,4) \times(1,2)=(39,1)$
1661 : $(6,5) \times(2,1)=(7,31)$
1661 : $(6,5) \times(1,2)=(35,4)$
2071 : $(9,1) \times(3,1)=(26,15)$
2071 : $(9,1) \times(1,3)=(6,37)$
2299 : $(7,3) \times(3,1)=(18,25)$
2299 : $(7,3) \times(1,3)=(45,2)$
2581 : $(8,1) \times(4,1)=(31,15)$
2581 : $(8,1) \times(1,4)=(4,45)$
2759 : $(8,1) \times(3,2)=(22,25)$
2759 : $(8,1) \times(2,3)=(13,35)$
$2755:(7,2) \times(4,1)=(26,21)$
$2755:(7,2) \times(1,4)=(51,1)$
$2945:(7,2) \times(3,2)=(17,32)$
$2945:(7,2) \times(2,3)=(8,43)$
2929 : $(5,4) \times(4,1)=(16,33)$
2929 : $(5,4) \times(1,4)=(39,11)$
3131 : $(5,4) \times(3,2)=(7,46)$
3131 : $(5,4) \times(2,3)=(53,2)$
2911 : $(7,1) \times(5,1)=(34,15)$
2911 : $(7,1) \times(1,5)=(2,51)$
3239 : $(5,3) \times(5,1)=(22,29)$
3239 : $(5,3) \times(1,5)=(43,10)$
$3025:(6,1) \times(6,1)=(35,15)=5(7,3)$
$3025:(6,1) \times(1,6)=(55,0)=55(1,0)$
$3245:(6,1) \times(5,2)=(28,23)$
$3245:(6,1) \times(2,5)=(7,47)$
3355 : $(6,1) \times(4,3)=(21,31)$
$3355:(6,1) \times(3,4)=(14,39)$
3481 : $(5,2) \times(5,2)=(21,32)$
3481 : $(5,2) \times(2,5)=(59,0)=59(1,0)$
3599 : $(5,2) \times(4,3)=(14,41)$
3599 : $(5,2) \times(3,4)=(7,50)$
3721 : $(4,3) \times(4,3)=(7,51)$
3721 : $(4,3) \times(3,4)=(61,0)=61(1,0)$
\#\#\#\#\#\#\# $\mathrm{N}=15$ \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
$905:(12,1) \times(1,1)=(11,16)$
955 : $(11,2) \times(1,1)=(9,19)$
$995:(10,3) \times(1,1)=(7,22)$
1025 : $(9,4) \times(1,1)=(5,25)=5(1,5)$
1045 : $(8,5) \times(1,1)=(3,28)$
$1055:(7,6) \times(1,1)=(1,31)$
$1705:(11,1) \times(2,1)=(21,16)$
1705 : $(11,1) \times(1,2)=(9,29)$
$1969:(7,5) \times(2,1)=(9,32)$
$1969:(7,5) \times(1,2)=(40,3)$
2489 : $(10,1) \times(3,1)=(29,16)$
2489 : $(10,1) \times(1,3)=(7,40)$
2641 : $(9,2) \times(3,1)=(25,21)$
2641 : $(9,2) \times(1,3)=(3,47)$
$2755:(8,3) \times(3,1)=(21,26)$
$2755:(8,3) \times(1,3)=(51,1)$
2831 : $(7,4) \times(3,1)=(17,31)$
2831 : $(7,4) \times(1,3)=(46,5)$
$2869:(6,5) \times(3,1)=(13,36)$
2869 : $(6,5) \times(1,3)=(41,9)$
3161 : $(9,1) \times(4,1)=(35,16)$
3161 : $(9,1) \times(1,4)=(5,49)$
3379 : $(9,1) \times(3,2)=(25,27)$
3379 : $(9,1) \times(2,3)=(15,38)$
3509 : $(7,3) \times(4,1)=(25,28)$
$3509:(7,3) \times(1,4)=(52,5)$
3751 : $(7,3) \times(3,2)=(15,41)$
3751 : $(7,3) \times(2,3)=(5,54)$
$3649:(8,1) \times(5,1)=(39,16)$
3649 : $(8,1) \times(1,5)=(3,56)$
$3895:(7,2) \times(5,1)=(33,23)$
$3895:(7,2) \times(1,5)=(58,3)$
$4141:(5,4) \times(5,1)=(21,37)$
$4141:(5,4) \times(1,5)=(44,15)$
$3905:(7,1) \times(6,1)=(41,16)$
$3905:(7,1) \times(1,6)=(1,61)$
$4189:(7,1) \times(5,2)=(33,25)$
$4189:(7,1) \times(2,5)=(9,52)$
$4331:(7,1) \times(4,3)=(25,34)$
$4331:(7,1) \times(3,4)=(17,43)$
$4345:(5,3) \times(6,1)=(27,32)$
$4345:(5,3) \times(1,6)=(48,13)$
4661 : $(5,3) \times(5,2)=(19,43)$
$4661:(5,3) \times(2,5)=(61,5)$
$4819:(5,3) \times(4,3)=(11,54)$
4819 : $(5,3) \times(3,4)=(3,65)$
\#\#\#\#\#\#\# N = 16 \#
$1045:(13,1) \times(1,1)=(12,17)$
1145 : $(11,3) \times(1,1)=(8,23)$
1205 : $(9,5) \times(1,1)=(4,29)$
1991 : $(12,1) \times(2,1)=(23,17)$
1991 : $(12,1) \times(1,2)=(10,31)$
2101 : $(11,2) \times(2,1)=(20,21)$
2101 : $(11,2) \times(1,2)=(7,36)$
2189 : $(10,3) \times(2,1)=(17,25)$
2189 : $(10,3) \times(1,2)=(4,41)$
$2255:(9,4) \times(2,1)=(14,29)$
$2255:(9,4) \times(1,2)=(1,46)$

2299 : $(8,5) \times(2,1)=(11,33)=11(1,3)$
2299 : $(8,5) \times(1,2)=(45,2)$
2321 : $(7,6) \times(2,1)=(8,37)$
2321 : $(7,6) \times(1,2)=(41,5)$
$2945:(11,1) \times(3,1)=(32,17)$
$2945:(11,1) \times(1,3)=(8,43)$
3401 : $(7,5) \times(3,1)=(16,37)$
3401 : $(7,5) \times(1,3)=(47,8)$
3799 : $(10,1) \times(4,1)=(39,17)$
3799 : $(10,1) \times(1,4)=(6,53)$
4061 : $(10,1) \times(3,2)=(28,29)$
4061 : $(10,1) \times(2,3)=(17,41)$
4031 : $(9,2) \times(4,1)=(34,23)$
4031 : $(9,2) \times(1,4)=(1,62)$
4309 : $(9,2) \times(3,2)=(23,36)$
4309 : $(9,2) \times(2,3)=(12,49)$
$4205:(8,3) \times(4,1)=(29,29)=29(1,1)$
4205 : $(8,3) \times(1,4)=(59,4)$
$4495:(8,3) \times(3,2)=(18,43)$
4495 : $(8,3) \times(2,3)=(7,57)$
4321 : $(7,4) \times(4,1)=(24,35)$
4321 : $(7,4) \times(1,4)=(53,9)$
$4619:(7,4) \times(3,2)=(13,50)$
4619 : $(7,4) \times(2,3)=(2,65)$
$4379:(6,5) \times(4,1)=(19,41)$
$4379:(6,5) \times(1,4)=(47,14)$
4681 : $(6,5) \times(3,2)=(8,57)$
4681 : $(6,5) \times(2,3)=(64,3)$
4469 : $(9,1) \times(5,1)=(44,17)$
4469 : $(9,1) \times(1,5)=(4,61)$
4961 : $(7,3) \times(5,1)=(32,31)$
4961 : $(7,3) \times(1,5)=(59,8)$
$4895:(8,1) \times(6,1)=(47,17)$
4895 : $(8,1) \times(1,6)=(2,67)$
5251 : $(8,1) \times(5,2)=(38,27)$
5251 : $(8,1) \times(2,5)=(11,57)$
$5429:(8,1) \times(4,3)=(29,37)$
$5429:(8,1) \times(3,4)=(20,47)$
$5225:(7,2) \times(6,1)=(40,25)=5(8,5)$
$5225:(7,2) \times(1,6)=(65,5)=5(13,1)$
$5605:(7,2) \times(5,2)=(31,36)$
$5605:(7,2) \times(2,5)=(4,69)$
$5795:(7,2) \times(4,3)=(22,47)$
$5795:(7,2) \times(3,4)=(13,58)$
5555 : $(5,4) \times(6,1)=(26,41)$
5555 : $(5,4) \times(1,6)=(49,19)$
5959 : $(5,4) \times(5,2)=(17,54)$
5959 : $(5,4) \times(2,5)=(63,10)$
6161 : $(5,4) \times(4,3)=(8,67)$
6161 : $(5,4) \times(3,4)=(77,1)$
$5041:(7,1) \times(7,1)=(48,17)$
5041 : $(7,1) \times(1,7)=(71,0)=71(1,0)$
$5609:(7,1) \times(5,3)=(32,35)$

5609 : $(7,1) \times(3,5)=(16,53)$
6241 : $(5,3) \times(5,3)=(16,57)$
$6241:(5,3) \times(3,5)=(79,0)=79(1,0)$
\#\#\#\#\#\#\# N = 17 \#
$1195:(14,1) \times(1,1)=(13,18)$
$1255:(13,2) \times(1,1)=(11,21)$
1345 : $(11,4) \times(1,1)=(7,27)$
1405 : $(8,7) \times(1,1)=(1,36)$
2299 : $(13,1) \times(2,1)=(25,18)$
2299 : $(13,1) \times(1,2)=(11,33)=11(1,3)$
2519 : $(11,3) \times(2,1)=(19,26)$
2519 : $(11,3) \times(1,2)=(5,43)$
2651 : $(9,5) \times(2,1)=(13,34)$
2651 : $(9,5) \times(1,2)=(50,1)$
3439 : $(12,1) \times(3,1)=(35,18)$
3439 : $(12,1) \times(1,3)=(9,46)$
3629 : $(11,2) \times(3,1)=(31,23)$
3629 : $(11,2) \times(1,3)=(5,53)$
3781 : $(10,3) \times(3,1)=(27,28)$
3781 : $(10,3) \times(1,3)=(1,60)$
3895 : $(9,4) \times(3,1)=(23,33)$
3895 : $(9,4) \times(1,3)=(58,3)$
3971 : $(8,5) \times(3,1)=(19,38)=19(1,2)$
3971 : $(8,5) \times(1,3)=(53,7)$
$4009:(7,6) \times(3,1)=(15,43)$
4009 : $(7,6) \times(1,3)=(48,11)$
4495 : $(11,1) \times(4,1)=(43,18)$
4495 : $(11,1) \times(1,4)=(7,57)$
4805 : $(11,1) \times(3,2)=(31,31)=31(1,1)$
4805 : $(11,1) \times(2,3)=(19,44)$
5191 : $(7,5) \times(4,1)=(23,42)$
$5191:(7,5) \times(1,4)=(54,13)$
$5549:(7,5) \times(3,2)=(11,59)$
5549 : $(7,5) \times(2,3)=(73,1)$
5371 : $(10,1) \times(5,1)=(49,18)$
5371 : $(10,1) \times(1,5)=(5,66)$
5699 : $(9,2) \times(5,1)=(43,25)$
5699 : $(9,2) \times(1,5)=(74,1)$
5945 : $(8,3) \times(5,1)=(37,32)$
$5945:(8,3) \times(1,5)=(67,7)$
6109 : $(7,4) \times(5,1)=(31,39)$
6109 : $(7,4) \times(1,5)=(60,13)$
6191 : $(6,5) \times(5,1)=(25,46)$
6191 : $(6,5) \times(1,5)=(53,19)$
$5995:(9,1) \times(6,1)=(53,18)$
5995 : $(9,1) \times(1,6)=(3,73)$
6431 : $(9,1) \times(5,2)=(43,29)$
6431 : $(9,1) \times(2,5)=(13,62)$
6649 : $(9,1) \times(4,3)=(33,40)$
6649 : $(9,1) \times(3,4)=(23,51)$
$6655:(7,3) \times(6,1)=(39,34)$
$6655:(7,3) \times(1,6)=(66,11)=11(6,1)$
$7139:(7,3) \times(5,2)=(29,47)$

7139 : $(7,3) \times(2,5)=(83,1)$
7381 : $(7,3) \times(4,3)=(19,60)$
7381 : $(7,3) \times(3,4)=(9,73)$
6319 : $(8,1) \times(7,1)=(55,18)$
6319 : $(8,1) \times(1,7)=(1,78)$
7031 : $(8,1) \times(5,3)=(37,38)$
7031 : $(8,1) \times(3,5)=(19,58)$
$6745:(7,2) \times(7,1)=(47,27)$
$6745:(7,2) \times(1,7)=(72,7)$
$7505:(7,2) \times(5,3)=(29,49)$
$7505:(7,2) \times(3,5)=(11,71)$
7171 : $(5,4) \times(7,1)=(31,45)$
7171 : $(5,4) \times(1,7)=(54,23)$
7979 : $(5,4) \times(5,3)=(13,71)$
7979 : $(5,4) \times(3,5)=(82,5)$
\#\#\#\#\#\#\# $\mathrm{N}=18$ \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
1355 : $(15,1) \times(1,1)=(14,19)$
$1475:(13,3) \times(1,1)=(10,25)=5(2,5)$
1555 : $(11,5) \times(1,1)=(6,31)$
1595 : $(9,7) \times(1,1)=(2,37)$
2629 : $(14,1) \times(2,1)=(27,19)$
2629 : $(14,1) \times(1,2)=(12,35)$
2761 : $(13,2) \times(2,1)=(24,23)$
2761 : $(13,2) \times(1,2)=(9,40)$
2959 : $(11,4) \times(2,1)=(18,31)$
2959 : $(11,4) \times(1,2)=(3,50)$
3091 : $(8,7) \times(2,1)=(9,43)$
3091 : $(8,7) \times(1,2)=(47,6)$
3971 : $(13,1) \times(3,1)=(38,19)=19(2,1)$
3971 : $(13,1) \times(1,3)=(10,49)$
4351 : $(11,3) \times(3,1)=(30,29)$
4351 : $(11,3) \times(1,3)=(2,63)$
4579 : $(9,5) \times(3,1)=(22,39)$
4579 : $(9,5) \times(1,3)=(59,6)$
5249 : $(12,1) \times(4,1)=(47,19)$
5249 : $(12,1) \times(1,4)=(8,61)$
5611 : $(12,1) \times(3,2)=(34,33)$
5611 : $(12,1) \times(2,3)=(21,47)$
5539 : $(11,2) \times(4,1)=(42,25)$
5539 : $(11,2) \times(1,4)=(3,70)$
5921 : $(11,2) \times(3,2)=(29,40)$
5921 : $(11,2) \times(2,3)=(16,55)$
5771 : $(10,3) \times(4,1)=(37,31)$
5771 : $(10,3) \times(1,4)=(73,2)$
6169 : $(10,3) \times(3,2)=(24,47)$
6169 : $(10,3) \times(2,3)=(11,63)$
5945 : $(9,4) \times(4,1)=(32,37)$
5945 : $(9,4) \times(1,4)=(67,7)$
6355 : $(9,4) \times(3,2)=(19,54)$
6355 : $(9,4) \times(2,3)=(6,71)$
6061 : $(8,5) \times(4,1)=(27,43)$
6061 : $(8,5) \times(1,4)=(61,12)$
$6479:(8,5) \times(3,2)=(14,61)$

6479 : $(8,5) \times(2,3)=(1,79)$
6479 : $(8,5) \times(2,3)=(1,79)$
6119 : $(7,6) \times(4,1)=(22,49)$
6119 : 7,6$) \times(1,4)=(55,17)$
6541 : $(7,6) \times(3,2)=(9,68)$
6541 : $(7,6) \times(2,3)=(75,4)$
6355 : $(11,1) \times(5,1)=(54,19)$
6355 : $(11,1) \times(1,5)=(6,71)$
7339 : 7,5$) \times(5,1)=(30,47)$
7339 : 7,5) $\times(1,5)=(61,18)$
7205 : $(10,1) \times(6,1)=(59,19)$
7205 : $(10,1) \times(1,6)=(4,79)$
7729 : $(10,1) \times(5,2)=(48,31)$
7729 : $(10,1) \times(2,5)=(15,67)$
7991 : $(10,1) \times(4,3)=(37,43)$
7991 : $(10,1) \times(3,4)=(26,55)$
7645 : $(9,2) \times(6,1)=(52,27)$
7645 : $(9,2) \times(1,6)=(83,3)$
8201 : $(9,2) \times(5,2)=(41,40)$
8201 : $(9,2) \times(2,5)=(8,79)$
8479 : $(9,2) \times(4,3)=(30,53)$
8479 : $(9,2) \times(3,4)=(19,66)$
7975 : $(8,3) \times(6,1)=(45,35)=5(9,7)$
7975 : $(8,3) \times(1,6)=(75,10)=5(15,2)$
8555 : $(8,3) \times(5,2)=(34,49)$
8555 : $(8,3) \times(2,5)=(1,91)$
8845 : $(8,3) \times(4,3)=(23,63)$
8845 : $(8,3) \times(3,4)=(12,77)$
8195 : $(7,4) \times(6,1)=(38,43)$
8195 : 7,4$) \times(1,6)=(67,17)$
8791 : 7,4$) \times(5,2)=(27,58)$
8791 : $(7,4) \times(2,5)=(85,6)$
9089 : $(7,4) \times(4,3)=(16,73)$
9089 : $(7,4) \times(3,4)=(5,88)$
8305 : $(6,5) \times(6,1)=(31,51)$
8305 : $(6,5) \times(1,6)=(59,24)$
8909 : $(6,5) \times(5,2)=(20,67)$
8909 : $(6,5) \times(2,5)=(76,13)$
9211 : (6,5) $\times(4,3)=(9,83)$
9211 : $(6,5) \times(3,4)=(93,2)$
7739 : $(9,1) \times(7,1)=(62,19)$
7739 : $(9,1) \times(1,7)=(2,85)$
8611 : $(9,1) \times(5,3)=(42,41)$
8611 : $(9,1) \times(3,5)=(22,63)$
8591 : $(7,3) \times(7,1)=(46,37)$
8591 : $(7,3) \times(1,7)=(73,14)$
9559 : $(7,3) \times(5,3)=(26,63)$
9559 : $(7,3) \times(3,5)=(6,89)$
7921 : $(8,1) \times(8,1)=(63,19)$
7921 : $(8,1) \times(1,8)=(89,0)=89(1,0)$
8455 : $(8,1) \times(7,2)=(54,29)$
8455 : $(8,1) \times(2,7)=(9,79)$
8989 : $(8,1) \times(5,4)=(36,49)$

6479 : $(8,5) \times(2,3)=(1,79)$
6119 : $(7,6) \times(4,1)=(22,49)$
6119 : $(7,6) \times(1,4)=(55,17)$
6541 : $(7,6) \times(3,2)=(9,68)$
6541 : $(7,6) \times(2,3)=(75,4)$
6355 : $(11,1) \times(5,1)=(54,19)$
6355 : $(11,1) \times(1,5)=(6,71)$
7339 : $(7,5) \times(5,1)=(30,47)$
7339 : $(7,5) \times(1,5)=(61,18)$
7205 : $(10,1) \times(6,1)=(59,19)$
7205 : $(10,1) \times(1,6)=(4,79)$
7729 : $(10,1) \times(5,2)=(48,31)$
7729 : $(10,1) \times(2,5)=(15,67)$
7991 : $(10,1) \times(4,3)=(37,43)$
7991 : $(10,1) \times(3,4)=(26,55)$
7645 : $(9,2) \times(6,1)=(52,27)$
7645 : $(9,2) \times(1,6)=(83,3)$
8201 : $(9,2) \times(5,2)=(41,40)$
8201 : $(9,2) \times(2,5)=(8,79)$
8479 : $(9,2) \times(4,3)=(30,53)$
8479 : $(9,2) \times(3,4)=(19,66)$
$7975:(8,3) \times(6,1)=(45,35)=5(9,7)$
$7975:(8,3) \times(1,6)=(75,10)=5(15,2)$
$8555:(8,3) \times(5,2)=(34,49)$
$8555:(8,3) \times(2,5)=(1,91)$
$8845:(8,3) \times(4,3)=(23,63)$
$8845:(8,3) \times(3,4)=(12,77)$
$8195:(7,4) \times(6,1)=(38,43)$
$8195:(7,4) \times(1,6)=(67,17)$
8791 : $(7,4) \times(5,2)=(27,58)$
8791 : $(7,4) \times(2,5)=(85,6)$
9089 : $(7,4) \times(4,3)=(16,73)$
9089 : $(7,4) \times(3,4)=(5,88)$
$8305:(6,5) \times(6,1)=(31,51)$
8305 : $(6,5) \times(1,6)=(59,24)$
8909 : $(6,5) \times(5,2)=(20,67)$
8909 : $(6,5) \times(2,5)=(76,13)$
9211 : $(6,5) \times(4,3)=(9,83)$
9211 : $(6,5) \times(3,4)=(93,2)$
7739 : $(9,1) \times(7,1)=(62,19)$
7739 : $(9,1) \times(1,7)=(2,85)$
8611 : $(9,1) \times(5,3)=(42,41)$
8611 : $(9,1) \times(3,5)=(22,63)$
8591 : $(7,3) \times(7,1)=(46,37)$
8591 : $(7,3) \times(1,7)=(73,14)$
9559 : $(7,3) \times(5,3)=(26,63)$
9559 : $(7,3) \times(3,5)=(6,89)$
7921 : $(8,1) \times(8,1)=(63,19)$
7921 : $(8,1) \times(1,8)=(89,0)=89(1,0)$
8455 : $(8,1) \times(7,2)=(54,29)$
8455 : $(8,1) \times(2,7)=(9,79)$
8989 : $(8,1) \times(5,4)=(36,49)$

8989 : $(8,1) \times(4,5)=(27,59)$
$9025:(7,2) \times(7,2)=(45,40)=5(9,8)$
$9025:(7,2) \times(2,7)=(95,0)=95(1,0)$
9595 : $(7,2) \times(5,4)=(27,62)$
9595 : $(7,2) \times(4,5)=(18,73)$
10201 : $(5,4) \times(5,4)=(9,88)$
10201 : $(5,4) \times(4,5)=(101,0)=101(1,0)$
\#\#\#\#\#\#\# $\mathrm{N}=19$ \#
1525 : $(16,1) \times(1,1)=(15,20)=5(3,4)$
1595 : $(15,2) \times(1,1)=(13,23)$
1655 : $(14,3) \times(1,1)=(11,26)$
$1705:(13,4) \times(1,1)=(9,29)$
$1745:(12,5) \times(1,1)=(7,32)$
$1775:(11,6) \times(1,1)=(5,35)=5(1,7)$
1795 : $(10,7) \times(1,1)=(3,38)$
1805 : $(9,8) \times(1,1)=(1,41)$
2981 : $(15,1) \times(2,1)=(29,20)$
2981 : $(15,1) \times(1,2)=(13,37)$
3245 : $(13,3) \times(2,1)=(23,28)$
$3245:(13,3) \times(1,2)=(7,47)$
3421 : $(11,5) \times(2,1)=(17,36)$
3421 : $(11,5) \times(1,2)=(1,57)$
3509 : $(9,7) \times(2,1)=(11,44)=11(1,4)$
3509 : $(9,7) \times(1,2)=(52,5)$
4541 : $(14,1) \times(3,1)=(41,20)$
4541 : $(14,1) \times(1,3)=(11,52)$
4769 : $(13,2) \times(3,1)=(37,25)$
4769 : $(13,2) \times(1,3)=(7,59)$
5111 : $(11,4) \times(3,1)=(29,35)$
5111 : $(11,4) \times(1,3)=(70,1)$
5339 : $(8,7) \times(3,1)=(17,50)$
5339 : $(8,7) \times(1,3)=(55,13)$
6061 : $(13,1) \times(4,1)=(51,20)$
6061 : $(13,1) \times(1,4)=(9,65)$
6479 : $(13,1) \times(3,2)=(37,35)$
6479 : $(13,1) \times(2,3)=(23,50)$
6641 : $(11,3) \times(4,1)=(41,32)$
6641 : $(11,3) \times(1,4)=(80,1)$
7099 : $(11,3) \times(3,2)=(27,49)$
7099 : $(11,3) \times(2,3)=(13,66)$
6989 : $(9,5) \times(4,1)=(31,44)$
6989 : $(9,5) \times(1,4)=(68,11)$
7471 : $(9,5) \times(3,2)=(17,63)$
7471 : $(9,5) \times(2,3)=(3,82)$
7421 : $(12,1) \times(5,1)=(59,20)$
7421 : $(12,1) \times(1,5)=(7,76)$
7831 : $(11,2) \times(5,1)=(53,27)$
7831 : $(11,2) \times(1,5)=(1,87)$
8159 : $(10,3) \times(5,1)=(47,34)$
8159 : $(10,3) \times(1,5)=(83,5)$
$8405:(9,4) \times(5,1)=(41,41)=41(1,1)$
$8405:(9,4) \times(1,5)=(76,11)$

