Fibonacci-Like Sequences and their Cassini Constants, Multiplication and Factorisation.

David Friend

Foreword

I graduated in Mathematics long ago, but worked as a Systems Programmer so I don't claim to be a mathematician. In an idle moment I pondered on a proof of the convergence of the Fibonacci sequence, and realised it applies to any Fibonacci-like sequence and reveals a constant for the sequence. Then I followed a trail of discovery, more or less as detailed in this document.

This document uses little more than High School mathematics, and is liberally illustrated with examples. I may not have used the received terminology, and have taken the name of Cassini for the constant since it plugs straight into Cassini's Identity. My notation uses (r,s) for a sequence in terms of its root values rather than its starting values. The final conjectures, while easy to understand, may be challenging to prove! Or maybe they have been?

Everything in this document I have discovered independently, but subsequent searches show that many of the results are already documented in one form or another. In particular the comments in OEIS® Sequence A082970 by Wolfdieter Lang precede many of mine. Also by T.D.Noe, Shreevatsa R, Matthew Staller and Robert Israel; and a reference to a paper by Alfred Brousseau in 1963, who suggests ordering Fibonacci-like sequences in exactly the order I chose. Nevertheless, I hope to have made some contribution.

Some supporting material, perl programs and output, can be found at:

https://www.dropbox.com/sh/jwju9byfibiu41e/AAClhxJIAcc9vhd7vnLnX1nXa?dl=0

David Friend

September 2020

Summary

A simple proof of the convergence of a general Fibonacci-like sequence leads to the **Cassini constant, K**, which we then use to generalise some identities. Extending such an integer sequence backwards reveals a **unique origin** about which the sequence can be reflected, giving two **complementary sequences**.

These give us **root values** which define how a sequence is derived from the Fibonacci sequence. The asymptotic ratio of the terms of a general sequence to the Fibonacci sequence gives **skewed-roots** of the Cassini constant. We use these to create a **formula for the n**th **term** of any Fibonacci-like sequence.

Further derivations, using the root values of one sequence as multipliers in a simple linear combination of another sequence, is a process which has direct parallels with multiplication, with the Fibonacci sequence acting as an identity. The corresponding results for **sequence multiplication** are listed and proved.

In particular: the Cassini constant of the product of sequences is the product of the Cassini constants of the sequences. Further, the product of two complementary sequences is a simple multiple of the Fibonacci sequence.

We show how to find the roots of the product of two sequences.

For **sequence factorisation** we make some number theoretic conjectures about Cassini constants, based on observations and strong empirical evidence. The foremost of these are that a prime Cassini constant results from just one pair of complementary **prime sequences**, and non-prime Cassini constants have prime factors which are themselves all Cassini constants.

More conjectures are made and we show how the factors of Cassini constants can be used to factorise a sequence whose roots are known, or to determine how many, and which, sequences give rise to a given Cassini constant, K. This leads to the integer solutions r and s of the equation: $(r^2 + 3rs + s^2) = K$.

Finally, we introduce OEIS[®] sequence A336403 and show it is closed under multiplication, filling a gap in sequences related to the Cassini constants.

Fibonacci-Like Sequences

A **Fibonacci-like sequence** is one whose terms are created by adding the two previous terms, i.e. S(i+2)=S(i+1)+S(i), and is defined by two **starting values a,b** conventionally given as S(0) and S(1). For example:

```
a=0, b=1 gives: 0,1,1,2,3,5,8 ... the Fibonacci Sequence F;
a=2, b=1 gives: 2,1,3,4,7,11,18 ... the Lucas Sequence L;
a=4, b=5 gives: 4,5,9,14,23,37,60 ... a general Fibonacci-like sequence S.
```

Starting with terms S(i)=u, S(i+1)=v, we get S(i+2)=(u+v), S(i+3)=(u+2v), S(i+4)=(2u+3v), and it becomes obvious that the coefficients are consecutive terms from the Fibonacci sequence itself. The general term can be written as S(i+j) = F(j-1)u + F(j)v = F(j-1)S(i) + F(j)S(i+1) or, by replacing i with i-1, more neatly as: S(i+j-1) = F(j-1)S(i-1) + F(j)S(i) or S(i+j-1) = F(i-1)S(j-1) + F(i)S(j).

Note that in this expression the index origin of the Fibonacci Sequence must be fixed at F(0)=0 to get the required coefficients. References to the Fibonacci and Lucas Sequences will always use the time-honoured origins F(0)=0 and L(0)=2.

The general sequence S can, for the moment, have a more flexible origin. For example, if 4=S(1) and 5=S(2) in the general example above, we get:

 $S(7) = S(2+5) = F(4)S(2) + F(5)S(3) = 3 \times 5 + 5 \times 9 = 15 + 45 = 60,$ or $S(7) = S(3+5-1) = F(2)S(4) + F(3)S(5) = 1 \times 14 + 2 \times 23 = 14 + 46 = 60.$

If we know the values of any two terms S(i) and S(i+j) and their separation 'j', the expression above will give us S(i+1) and the sequence is fully determined; but in general any two given separated values may not define an integer sequence, for example 0,x,y,3 would give x=y=3/2.

Later, we shall be interested in sequences derived from an *alternate* pair r,,s. Here the intermediate term *is* an integer so generates an integer sequence.

Simple Identity

For any Fibonacci-like sequence S (including F and L): **S(n+r) + (-1)**^r**S(n-r) = L(r)S(n)** where L is the Lucas Sequence with L(0)=2 and L(1)=1.

Proof: For r=0: S(n) + S(n) = 2S(n) = L(0)S(n)For r=1: S(n+1) - S(n-1) = S(n) = L(1)S(n)For r+2: $S(n+(r+2)) + (-1)^{(r+2)}S(n-(r+2))$ $= S(n+(r+1)) + S(n+r) + (-1)^{r}(S(n-r) - S(n-(r+1)))$ = S(n+r) + (-1)^{r}S(n-r) + S(n+(r+1)) + (-1)^{(r+1)}S(n-(r+1)) = L(r)S(n) + L(r+1)S(n) = L(r+2)S(n) [QED]

For example: S(n+2) + S(n-2) = 3S(n), where 3=L(2).

When r=n and S is the Fibonacci sequence F: F(2n) = L(n)F(n). When r=n and S is the Lucas sequence L: $L(2n) = (L(n))^2 \pm 2$ (as n is odd or even).

Convergence

For any Fibonacci-like sequence S, the ratio S(i+1)/S(i) converges to the Golden Ratio $\Phi \approx 1.618034...$, being the positive solution of the equation $x^2 = x + 1$.

The equation $\Phi^2 = \Phi + 1$ can also be written as $\Phi = 1 + (1/\Phi)$. Let u, v, (u+v), (u+2v) be any four consecutive terms in the sequence ($\neq 0$). If (v/u) < Φ then (u/v) > (1/ Φ), so that (u+v)/v = (u/v) + 1 > (1/ Φ) + 1 = Φ ; and vice versa. I.e. the ratio of consecutive terms alternates either side of Φ .

To show convergence we look at the difference between consecutive ratios. The first difference is $(u+v)/v - v/u = (u(u+v) - v^2)/uv$. The next difference is $(u+2v)/(u+v) - (u+v)/v = (v(u+2v) - (u+v)^2)/v(u+v)$ $= (uv + 2v^2 - u^2 - 2uv - v^2)/v(u+v) = (v^2 - u^2 - uv)/v(u+v) = ((v^2 - u(u+v))/v(u+v).$

From which we see that the numerator is constant with alternating sign, but the denominator increases as the sequence progresses, proving convergence.

The Cassini Constant

We can express the above constant in terms of the starting values a,b of S as $(a(a+b) - b^2)$, and call it the **Cassini constant: K, K_s or K**_{a,b}.

a=0, b=1 gives K_F=K_{0,1}=-1 for the Fibonacci Sequence (but K_{1,0}=+1),

a=2, b=1 gives K_L=K_{2,1}=+5 for the Lucas Sequence,

a=4, b=5 gives K_S=K_{4,5}=11 for the general example above.

If S(0)=a and S(1)=b then $K_S=K_{a,b}=S(0)S(2)-S(1)^2$ and we showed above that, for any n: $S(n-1)S(n+1) - S(n)^2 = (-1)^{n+1}K_S = (-1)^n(-K_S)$. This is a generalisation of **Cassini's Identity** for the Fibonacci sequence, where $K_F=-1$. Later we shall fix the index origin and generalise some other identities.

In the above, a,b can be any real numbers. If $(b/a)=\Phi$, then every pair has the same ratio Φ , and **K=0**. Going backwards down this sequence the terms get smaller and approach 0, but always remain positive.

From now on, we shall be dealing only with *integer* sequences.

Scalar Multiples

If any two consecutive terms of a sequence (or indeed any alternate pair) have a common factor λ , then every term in the sequence has the same factor λ . Then define T such that T(i)=S(i)/ λ . We say that S is a **scalar multiple** of T and we write **S=\lambdaT**. (When using an index we ignore the semantic ambiguity of " λ T(n)", since the nth term of λ T has the value λ ×T(n) by definition).

Clearly, the Cassini constant is $K_{\lambda T} = \lambda^2 K_T$.

Since every integer divides zero, any sequence with a zero term has the next term as a common factor, λ say, and the sequence contains ..., $-\lambda$, λ , 0, λ , λ ,... In this case, S is a scalar multiple of the Fibonacci sequence, i.e. **S=\lambdaF**.

Backward Extensions and Negative Indices and Terms

Any Fibonacci-like sequence can be extended backwards into negative indices using: S(i-1) = S(i+1) - S(i). Any integer sequence extending backwards will include negative terms: positive terms become smaller until S(i+1) < (S(i+2))/2, whence S(i) > S(i+1). Extending back beyond this point makes S(i-1) negative, and then gives alternating negative and positive terms.

E.g. ... -8,5,-3,2,-1,1,0,1,1,2,3,5 ... for the Fibonacci sequence, and ... -11,7,-4,3,-1,2,1,3,4,7,11,18 ... for the Lucas sequence, and ... -7,5,-2,3,1,4,5,9,14,23 ... for the sequence defined by a=4, b=5.

Apart from its sign, the Cassini constant can be calculated from any two consecutive values anywhere in an extended sequence.

Sequence/Index Origin

Since a sequence is endless in both directions we need to define the origin.

If a sequence contains a zero value it is either the Fibonacci sequence F or a scalar multiple λF , so we use the zero value as the origin. The starting values are $\lambda F(0)=0$, $\lambda F(1)=\lambda$, and the Cassini constant is negative: $K_{0,\lambda}=-\lambda^2$.

From now on we refer to F or λ F specifically, and use other symbols such as S for sequences with no zero value or which have a different index origin.

For the general sequence S we choose the origin S(0) so that S(-1) is the "rightmost" negative term. This gives the following properties:

S(-1) and S(1) are the *only* alternate pair with opposite signs; S(0) and S(1) are the *first* consecutive pair of positive numbers; S(0) and S(1) are the *only* descending positive pair, i.e. S(0) > S(1); S(-1) and S(1) have the *smallest sum* of absolute values of any alternate pair; for all $i \ge 0$ we have S(i) > 0; and for all i < 0 we have S(2i) > 0 and S(2i+1) < 0.

Let ${}^{a}S_{b}$ denote a sequence in term of its starting values S(0)=a and S(1)=b. Since a>b, we have a(a+b)>2b², so K_s>b² and is *always positive*.

To show the origin of a sequence, we now show it in square brackets: e.g. ... -8,5,-3,2,-1,1,[0],1,1,2,3,5 ... for the Fibonacci sequence F, and ... -11,7,-4,3,-1,[2],1,3,4,7,11 ... for the Lucas sequence L, which still has the conventional origin and index so we can write $L = {}^{2}S_{1}$, and ... -19,12,-7,5,-2,[3],1,4,5,9,14 ... for ${}^{3}S_{1}$, now starting with a=3, b=1.

Generalising Some Identities

Having defined an index origin above, we can now generalise some identities. We have proved the first, but the rest are stated without proof.

 Cassini's Identity: $F(n-1)F(n+1) - F(n)^2 = (-1)^n$

 becomes
 $S(n-1)S(n+1) - S(n)^2 = (-1)^n(-K_S)$

 Catalan's Identity: $F(n)^2 - F(n-r)F(n+r) = (-1)^{n-r}F(r)^2$

 becomes
 $S(n)^2 - S(n-r)S(n+r) = (-1)^{n-r}F(r)^2(-K_S)$

 Vajda's Identity:
 $F(n+i)F(n+j) - F(n)F(n+i+j) = (-1)^nF(i)F(j)$

 becomes
 $S(n+i)S(n+j) - S(n)S(n+i+j) = (-1)^nF(i)F(j)(-K_S)$

 d'Ocagne's Identity:
 $F(m)F(n+1) - F(n)F(m+1) = (-1)^nF(m-n)$

 becomes
 $S(m)S(n+1) - S(n)S(m+1) = (-1)^nF(m-n)(-K_S)$

We can make these pairs homologous by appending the term " $(-K_F)$ " to the right-hand side of the base identities, since $(-K_F)=1$.

Complementary Sequences

Simple observation shows that the example sequence $S={}^{3}S_{1}$ S = ... 12,-7,5,-2,[3],1,4,5,9 ... can be reversed, with appropriate sign changes, to give $R={}^{3}S_{2}$ R = ... 9,-5,4,-1,[3],2,5,7,12 ...

For any sequence $S = {}^{a}S_{b}$ (S(i) $\neq 0$) we define the **complementary sequence S'** as follows: for all i: $S'(i)=(-1)^{i}S(-i)$, which has the effect of reversing/reflecting S

about S(0), with the appropriate sign changes. The complement of S' is S again, i.e. (S')'=S. The complement of a scalar multiple is the scalar multiple of the complement, i.e. $(\lambda S)'=\lambda(S')$. In general, the complement of **a s**_a is **a s**_a and vice versa. Therefore the complement of the Lucas sequence is itself: L'=²S₁=L.

S'(0)=S(0), S'(-1)=-S(1)<0 and S'(1)=-S(-1)>0, so the index origin is unchanged. Substituting S' for S and n=0 in Cassini's identity, sign changes cancel out and $K_{S'}=K_S$. I.e. complementary sequences have the same Cassini constant.

Substituting $(-1)^{i}S(-i)$ in the Simple Identity with n=0 we get S(i) + S'(i) = S(0)L(i) or **S+S'=S(0)L, the complements identity:** the term-by-term sum of a sequence plus its complement is the S(0)-times scalar multiple of the Lucas sequence.

If $S'(1)=S(1)=\lambda$ then $S'=S=\lambda L$, otherwise we nominate the smaller of S(1) and S'(1) as the Primary sequence and the larger as the Secondary sequence. With starting values [a],b the Primary sequence has b<(a-b) i.e. b<a/2.

Root Terms and Values

A sequence S can be defined by any alternate pair of terms. We choose the *only* alternate pair with opposite signs, S(-1)<0 and S(1)>0, as **root terms**. We define **root values:** r = -S(-1) and s = S(1), with r and s *both positive*, and r+s=S(0). The complementary sequence has root values **s** and **r**. Sometimes we simply refer to the roots, where the context is unambiguous.

Cassini's identity with n=0 gives K in terms of r and s: the Cassini constant $K = (r+s)^2 + rs = r^2 + 3rs + s^2$. We use the notation _rS_s or just (r,s) for the sequence and _rK_s for the constant.

In terms of starting values a,b we have a=S(0)=r+s and b=S(1)=s, so: ${}_{r}S_{s} = {}^{r+s}S_{s}$ with complement ${}_{s}S_{r} = {}^{r+s}S_{r}$ and ${}_{r}K_{s} = {}_{s}K_{r} = K_{r+s,s}$.

Two numbers with no common factor are said to be **relatively prime**. Clearly, root values are relatively prime if and only if the starting values are.

Complements and Root Terms of the Anomalous Fibonacci Sequence

The Fibonacci sequence clearly reflects about its zero value, which makes the natural origin F(0)=0; but the negative values fall on *even* negative indices. For the complement F' to be F the definition would have to be $F'(i)=(-1)^{i\pm 1}F(-i)$; but then F(i)+F'(i)=2F(i)=L(0)F(i) and not F(0)L(i), so the complements identity fails.

Using F(-1)=1 and F(1)=1 as root terms gives root values -1,1 and makes $K_F=-1$ negative, as we have already seen in the identities above. Further, since F(-1)

is *positive*, the index differs from our standard definition of origin described earlier, and F fails many of the properties associated with it.

The problems seem to stem from the zero value, which is neither positive nor negative. Consider a general sequence S with the *same values* as the Fibonacci sequence. If we choose the origin such that S(-1) and S(1) are *negative* and *non-negative* we get $S = {}_{1}S_{0} : ..., -1, [1], 0, ...;$ and if we base the origin on S(-1) and S(1) being *non-positive* and *positive* we get $S' = {}_{0}S_{1} : ..., 0, [1], 1,$ These two sequences are complementary with the normal definition.

Note that 0 = S(1) = F(0) = S'(-1) and in general S(i+1) = F(i) = S'(i-1). The complements identity applies, so S(i) + S'(i) = S(0)L(i) = L(i), and we have come in a roundabout way to the well known identity: F(i-1) + F(i+1) = L(i), i.e. the sum of alternate terms of the Fibonacci sequence gives the Lucas sequence.

The index origin F(0)=0 is required for the identities listed earlier, but in much of what follows we use the sequence (1,0) or its complement (0,1) which have the same values, and non-negative roots so that $K_{1,0} = K_{0,1} = +1$.

The On-line Encyclopedia of Integer Sequences[®], <u>https://oeis.org/</u>

The set of all (positive) Cassini constants is a known sequence listed in OEIS[®] as A031363. The subset of Cassini constants created by relatively prime starting values is also listed, as A089270; and the further subset of Cassini constants which are prime numbers is listed as A038872.

Below are extracts from their entries in OEIS[®], and some comments.

<u>A031363</u>:

Positive numbers of the form $x^2 + xy - y^2$; or, of the form $5x^2 - y^2$.

1, 4, 5, 9, 11, 16, 19, 20, 25, 29, 31, 36, 41, 44, 45, 49, 55, 59, 61, 64, 71, 76, 79, 80, 81, 89, 95, 99, 100, 101, 109, 116, 121, 124, 125, 131, 139, 144, 145, 149, 151, 155, 164, 169, 171, 176, 179, 180, 181, 191, 196, 199, 205, 209, 211, 220, 225, 229, 236

The first form is $x(x+y) - y^2$ so these are all the constants for Fibonacci-like sequences, including scalar multiples, with starting values [x],y. Later, we show that this set is closed under multiplication.

<u>A089270</u>:

Positive numbers represented by the integer binary quadratic form $x^2 + x^*y - y^2$ with x and y relatively prime.

1, 5, 11, 19, 29, 31, 41, 55, 59, 61, 71, 79, 89, 95, 101, 109, 121, 131, 139, 145, 149, 151, 155, 179, 181, 191, 199, 205, 209, 211, 229, 239, 241, 251, 269, 271, 281, 295, 305, 311, 319, 331, 341, 349, 355, 359, 361, 379, 389, 395, 401, 409, 419, 421, 431

I.e. all the constants for relatively prime starting values. This set includes 1.

Any sequence S can be expressed as $\lambda(r,s)$ where r and s are relatively prime. Since $K_s = \lambda^2(rK_s)$ there is a natural one-to-one mapping between A031363 and the Cartesian product of A000290 (the squares) and A089270. A089270 itself also contains some squares, e.g. $121 = {}_7K_3$ and $361 = {}_9K_8$.

<u>A038872</u>:

Primes congruent to $\{0, 1, 4\} \mod 5$.

5, 11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 131, 139, 149, 151, 179, 181, 191, 199, 211, 229, 239, 241, 251, 269, 271, 281, 311, 331, 349, 359, 379, 389, 401, 409, 419, 421, 431, 439, 449, 461, 479, 491, 499, 509, 521, 541, 569, 571, 599, 601, 619

Primes of the form $x^2 + xy - y^2$ (as well as of the form $x^2 + 3xy + y^2$).

I.e. all the constants which are prime numbers. This set excludes 1. Only 5 can be 0 mod 5 and prime; while 1 and 4 are ±1 mod 5 and must be odd, so are ±1 mod 10. Hence, after 5, all the prime constants end in 1 or 9.

A045468:

Primes congruent to $\{1, 4\} \mod 5$.

11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 131, 139, 149, 151, 179, 181, 191, 199, 211, 229, 239, 241, 251, 269, 271, 281, 311, 331, 349, 359, 379, 389, 401, 409, 419, 421, 431, 439, 449, 461, 479, 491

This is clearly A038872 without the 5 term.

A336403:

The subsequence of $\underline{A089270}$ which excludes terms divisible by 5.

1, 11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 121, 131, 139, 149, 151, 179, 181, 191, 199, 209, 211, 229, 239, 241, 251, 269, 271, 281, 311, 319, 331, 341, 349, 359, 361, 379, 389, 401, 409, 419, 421, 431, 439, 449, 451, 461, 479, 491, 499, 509

Later, we show that this set is closed under multiplication.

Examples of Sequences and their Cassini Constants

In the next part of this document we shall look at the relationships between sequences, and the significance of the factors of their Cassini constants.

We now show more example sequences to inform our subsequent discussion.

We list them in the order of their starting values **[a],b** with **a** the major number. We do not show scalar multiples and we restrict **b** to not more than **a/2**, to show only Primary sequences (in which the Secondary can be seen backwards, with sign changes). The Fibonacci sequence is shown as [1],0.

We show a few terms either side of the origin to start the sequence and its complement. We also show the Cassini constant K and its factors. Note that K is in ascending order *only* within each major starting value [a].

... 5 -3 2 -1 [1] 0 1 1 2 ... K=1 ... 7 -4 3 -1 [2] 1 3 4 7 ... K=5 (prime) ... 12 -7 5 -2 [3] 1 4 5 9 ... K=11 (prime) ... 17 -10 7 -3 [4] 1 5 6 11 ... K=19 (prime) ... 22 -13 9 -4 [5] 1 6 7 13 ... K=29 (prime) ... 19 -11 8 -3 [5] 2 7 9 16 ... K=31 (prime) ... 27 -16 11 -5 [6] 1 7 8 15 ... K=41 (prime) ... 32 -19 13 -6 [7] 1 8 9 17 ... K=55 = 5 x 11 ... 29 -17 12 -5 [7] 2 9 11 20 ... K=59 (prime) ... 26 -15 11 -4 [7] 3 10 13 23 ... K=61 (prime) ... 37 -22 15 -7 [8] 1 9 10 19 ... K=71 (prime) ... 31 -18 13 -5 [8] 3 11 14 25 ... K=79 (prime) ... 42 -25 17 -8 [9] 1 10 11 21 ... K=89 (prime) ... 39 -23 16 -7 [9] 2 11 13 24 ... K=95 = 5 x 19 ... 33 -19 14 -5 [9] 4 13 17 30 ... K=101 (prime) ... 47 -28 19 -9 [10] 1 11 12 23 ... K=109 (prime) ... 41 -24 17 -7 [10] 3 13 16 29 ... K=121 = 11 x 11 ... 52 -31 21 -10 [11] 1 12 13 25 ... K=131 (prime) ... 49 -29 20 -9 [11] 2 13 15 28 ... K=139 (prime) ... 46 -27 19 -8 [11] 3 14 17 31 ... K=145 = 5 x 29 ... 43 -25 18 -7 [11] 4 15 19 34 ... K=149 (prime) ... 40 -23 17 -6 [11] 5 16 21 37 ... K=151 (prime) ... 57 -34 23 -11 [12] 1 13 14 27 ... K=155 = 5 x 31 ... 45 -26 19 -7 [12] 5 17 22 39 ... K=179 (prime) ... 62 -37 25 -12 [13] 1 14 15 29 ... K=181 (prime) ... 59 -35 24 -11 [13] 2 15 17 32 ... K=191 (prime) ... 56 -33 23 -10 [13] 3 16 19 35 ... K=199 (prime) ... 53 -31 22 -9 [13] 4 17 21 38 ... K=205 = 5 x 41 ... 50 -29 21 -8 [13] 5 18 23 41 ... K=209 = 11 x 19 ... 47 -27 20 -7 [13] 6 19 25 44 ... K=211 (prime) ... 67 -40 27 -13 [14] 1 15 16 31 ... K=209 = 11 x 19 ... 61 -36 25 -11 [14] 3 17 20 37 ... K=229 (prime)

... 55 -32 23 -9 [14] 5 19 24 43 ... K=241 (prime) ... 72 -43 29 -14 [15] 1 16 17 33 ... K=239 (prime) ... 69 -41 28 -13 [15] 2 17 19 36 ... K=251 (prime) ... 63 -37 26 -11 [15] 4 19 23 42 ... K=269 (prime) ... 54 -31 23 -8 [15] 7 22 29 51 ... K=281 (prime) ... 77 -46 31 -15 [16] 1 17 18 35 ... K=271 (prime) ... 71 -42 29 -13 [16] 3 19 22 41 ... K=295 = 5 x 59 ... 65 -38 27 -11 [16] 5 21 26 47 ... K=311 (prime) ... 59 -34 25 -9 [16] 7 23 30 53 ... K=319 = 11 x 29 ... 82 -49 33 -16 [17] 1 18 19 37 ... K=305 = 5 x 61 ... 79 -47 32 -15 [17] 2 19 21 40 ... K=319 = 11 x 29 ... 76 -45 31 -14 [17] 3 20 23 43 ... K=331 (prime) ... 73 -43 30 -13 [17] 4 21 25 46 ... K=341 = 11 x 31 ... 70 -41 29 -12 [17] 5 22 27 49 ... K=349 (prime) ... 67 -39 28 -11 [17] 6 23 29 52 ... K=355 = 5 x 71 ... 64 -37 27 -10 [17] 7 24 31 55 ... K=359 (prime) ... 61 -35 26 -9 [17] 8 25 33 58 ... K=361 = 19 x 19 ... 87 -52 35 -17 [18] 1 19 20 39 ... K=341 = 11 x 31 ... 75 -44 31 -13 [18] 5 23 28 51 ... K=389 (prime) ... 69 -40 29 -11 [18] 7 25 32 57 ... K=401 (prime) ... 92 -55 37 -18 [19] 1 20 21 41 ... K=379 (prime) ... 89 -53 36 -17 [19] 2 21 23 44 ... K=395 = 5 x 79 ... 86 -51 35 -16 [19] 3 22 25 47 ... K=409 (prime) ... 83 -49 34 -15 [19] 4 23 27 50 ... K=421 (prime) ... 80 -47 33 -14 [19] 5 24 29 53 ... K=431 (prime) ... 77 -45 32 -13 [19] 6 25 31 56 ... K=439 (prime) ... 74 -43 31 -12 [19] 7 26 33 59 ... K=445 = 5 x 89 ... 71 -41 30 -11 [19] 8 27 35 62 ... K=449 (prime) ... 68 -39 29 -10 [19] 9 28 37 65 ... K=451 = 11 x 41 ... 97 -58 39 -19 [20] 1 21 22 43 ... K=419 (prime) ... 91 -54 37 -17 [20] 3 23 26 49 ... K=451 = 11 x 41 ... 79 -46 33 -13 [20] 7 27 34 61 ... K=491 (prime)

This list is continued in Appendix A.

Derived Sequences

We showed earlier how the Lucas sequence can be derived from the Fibonacci sequence by adding alternate terms of F, i.e. L(i) = F(i-1) + F(i+1).

If this process is repeated on the Lucas sequence the result is 5F, the 5-times scalar multiple of Fibonacci, i.e. L(i-1) + L(i+1) = 5F(i), as shown in the table:

Fibonacci:	-8	5	-3	2	-1	1	[0]	1	1	2	3	5	8	K _{1,0} =1
Lucas $=_1S_1$:	18	-11	7	-4	3	-1	[2]	1	3	4	7	11	18	K _L =5
5F:		25	-15	10	-5	5	[0]	5	5	10	15	25		K _{5,0} =25

The index origins line up in the table (only) because F and 5F have a different rule to L, and we can use index "i" on both sides of the derivation definitions. Note that for λF we show the positive Cassini constants $K_{\lambda,0}$.

A similar derivation using the *root values* r,s of a sequence as respective multipliers, i.e. S(i) = rF(i-1) + sF(i+1), actually results in the sequence rS_s :

Fibonacci:	-3	2	-1	1	[0]	1	1	2	3	K _{1,0} =1
(r,s)= _r S _s :	5r+2s	–(3r+s)	2r+s	-r	[r+s]	S	r+2s	r+3s	2r+5s	K= _r K _s

The roots r,s can represent either the Primary or the Secondary sequence.

Sequence Ratios and Skewed-Roots of K

Earlier we showed that the ratio of consecutive terms in any Fibonacci-like sequence converges to Φ , with K being a measure of how quickly. Since the index origins line up (for the first derivation) we now consider the asymptotic ratio between terms of a general sequence and the Fibonacci sequence.

Three consecutive terms of F converge to $u/\Phi, u, u\Phi$ and since $1/\Phi=\Phi-1$ these are $u(\Phi-1), u, u\Phi$. The corresponding middle term in ${}_{r}S_{s}$ derived by using the roots r,s becomes $ru(\Phi-1)+su\Phi$, giving a ratio of $(r+s)\Phi-r$ between ${}_{r}S_{s}$ and F, i.e. ${}_{r}S_{s}(n)\rightarrow((r+s)\Phi-r)F(n)$ as $n\rightarrow\infty$.

The complement sequence ${}_{s}S_{r}$ has a ratio to F of (r+s) Φ -s.

We call (r+s)Φ-r and (r+s)Φ-s the skewed-roots of rKs.

Note that skewed-roots are with respect to a specific sequence.

These roots have the following properties: they

(i) differ by the integer **|r-s|**,

(ii) sum to $(r+s)/\Phi$: $(r+s)\Phi-r + (r+s)\Phi-s = (r+s)\Phi-(r+s) = (r+s)(\Phi-1) = (r+s)/\Phi$,

(iii) multiply to ${}_{r}K_{s}$ (hence their name): ((r+s) Φ -r)((r+s) Φ -s) = (r+s) ${}^{2}\Phi^{2}$ -(r+s) Φ (r+s)+rs = (r+s) ${}^{2}(\Phi^{2}-\Phi)$ +rs = (r+s) 2 +rs.

If r>s the first skewed-root is less than V_rK_s and the second is greater; and they are the ratios of the Primary and Secondary sequences to F, respectively. The ratio of the Primary sequence to the Secondary sequence is: $rS_s(n)/_sS_r(n) \rightarrow ((r+s)\Phi-r)/((r+s)\Phi-s)$ or $((r+s)\Phi-r)^2/_rK_s$, as $n \rightarrow \infty$.

rSs:	$_1S_1=L$	₂ S ₁	₃ S ₁	$_4S_1$	₃ S ₂		₈ S ₅	₁₃ S ₁
(r+s)Ф-r:	2.236	2.854	3.472	4.090	5.090	:	13.034	9.652
(r+s)Ф-s:	2.236	3.854	5.472	7.090	6.090		16.034	21.652
∏=rKs:	5	11	19	29	31		209	209

Examples (to 3 decimal places):

For K_L both skewed-roots are $\sqrt{5}$, i.e. L(n) $\rightarrow \sqrt{5} \times F(n)$ as n $\rightarrow \infty$.

The products 29 and 31 have all four skewed-roots based on $5\Phi = 8.090...$

Since 209 is the Cassini constant of two different sequences, it has different and unrelated pairs of skewed-roots with respect to each sequence.

General (Asymptotic) Expression For S(n)

It is well known (e.g. Binet's formula) that $F(n) \rightarrow \Phi^n/\sqrt{5}$ and $L(n) \rightarrow \Phi^n$. We now also have ${}_rS_s(n) \rightarrow ((r+s)\Phi - r)F(n)$, so we can combine to give:

General Formula: ${}_{r}S_{s}(n) \rightarrow ((r+s)\Phi - r)\Phi^{n}/\sqrt{5} \text{ as } n \rightarrow \infty$.

E.g. for ${}_8S_5$: ((r+s) Φ -r)/V5 \approx 13.034/2.236 (from the table above) \approx 5.829. So ${}_8S_5(10) \approx$ 5.829 \times 1.618¹⁰ \approx 5.829 \times 122.966 \approx 716.767 \approx integer 717 (\checkmark). In this example, we have rounded to 3 decimal places at every stage, and still get the correct result when rounding to the nearest integer. Using an 8-digit calculator gives ${}_8S_5(10)$ =716.94170, and correct rounded results for ${}_8S_5(n)$ whenever n≥6. A rule of thumb for ${}_rS_s(n)$ may be accuracy when n≥(r+s)/2?

Multiplication of Sequences

We can take any sequence P=(p,q) and perform a derivation using the roots r,s of S=(r,s) as multipliers to produce a sequence with terms: rP(i-1) + sP(i+1):

(p,q):	(2p+q)	-р	[p+q]	q	p+2q
(p,q)(r,s):		2pr+qr+ps+qs	-pr+qs	pr+qr+ps+2qs	

We call this **multiplication** of sequences and, depending on context, use the notations PS, $P\times(r,s)$, P(r,s) or (p,q)(r,s) to represent this process and the result, which we call the **product** of P and S; and use power notation e.g. P^2 for $P\times P$.

If P above is F, i.e. p=-1 and q=1, we get the results ... -r, [r+s], s ..., so **FS=S**. If S above is F, e.g. r=-1 and s=1, we get the results ... -p, [p+q], q ..., so **PF=P**. Hence **F** is the unit element in sequence multiplication.

We could equally use roots 1,0 or 0,1 for F, since the index origin of a product is determined by the resulting values. In general, the origin cannot be labelled in the table above, but one exception is for complementary sequences:

The Product of Complementary Sequences

Suppose (p,q) above is the complement (s,r). Substituting p=s and q=r, the three derived terms shown become: $r^2 + 3rs + s^2$, [0], $r^2 + 3rs + s^2$, so **the product of** $_r$ **S**_s and its complement $_s$ **S**_r is a scalar multiple: SS' = ($_r$ K_s)**F**.

Since the Lucas sequence is its own complement, $L^2=5F$ as seen earlier.

Alternative Derivations/Multiplication

Multiplication can be carried out using *any* alternate pair u,,v in the multiplying sequence, giving multipliers -u,v; but only the root values are *non-negative* pairs. For example: let P=(3,1) and S=(2,1):

S=(2,1):		5	-2	[3]	1	4	5	
P=(3,1):	-10	7	-3	[4]	1	5	6	11
(3,1)(-5,3):		41	-23	18	-5	[13]	8	
(2.4)(2.4).		22	10	-	[13]	8	21	
(3,1)(2,1):		-23	18	-5	[T2]	0	21	
(3,1)(2,1):		- 23 18	18 -5	- 5 [13]	8	o 21	21 29	

The same sequence results, but the terms shift diagonally in the table.

If we multiply sequence X by sequence Y, the general term in the resulting array can be expressed as Z[i][j] = -X(i-1)Y(j-1) + X(i+1)Y(j+1). The diagonal shift can be expressed as Z[i+1][j] = Z[i][j+1], and the proof:

$$Z[i+1][j] = -X(i)Y(j-1) + X(i+2)Y(j+1) = -X(i)Y(j-1) + (X(i) + X(i+1))Y(j+1)$$

= X(i)(Y(j+1) - Y(j-1)) + X(i+1)Y(j+1) = X(i)Y(j) + X(i+1))Y(j+1)

Z[i][j+1] = -X(i-1)Y(j) + X(i+1)Y(j+2) = -X(i-1)Y(j) + X(i+1)(Y(j) + Y(j+1))= (X(i+1) - X(i-1))Y(j) + X(i+1)Y(j+1) = X(i)Y(j) + X(i+1))Y(j+1)

yields another relationship: Z[i+1][j] = Z[i][j+1] = X(i)Y(j) + X(i+1)Y(j+1) which expresses multiplication as *consecutive* terms, such as starting values, multiplying *consecutive* terms, which may be easier to visualise in the table.

Example of Sequence Products

Take the sequences P=(7,5) and S=(3,2) which, with their complements and order of multiplication, generate eight possible products:

Fibonacci	5	-3	2	-1	1	[0]	1	1	2	3	5	K _{1,0} =1
P=(7,5)		45	-26	19	-7	[12]	5	17	22	39		K=179
S=(3,2)		19	-11	8	-3	[5]	2	7	9	16		K=31
(7,5)(3,2)			173	-92	81	-11	[70]	59	129			5549
(7,5)(2,3)			147	-73	[74]	1	75	76	151			5549
(5,7)(3,2)			151	-76	75	-1	[74]	73	147			5549
(5,7)(2,3)			129	-59	[70]	11	81	92	173			5549
(3,2)(7,5)			173	-92	81	-11	[70]	59	129			5549
(3,2)(5,7)			151	-76	75	-1	[74]	73	147			5549
(2,3)(7,5)			147	-73	[74]	1	75	76	151			5549
(2,3)(5,7)			129	-59	[70]	11	81	92	173			5549

Several things become apparent from the table above:

(i) The Cassini constants of the products are all the same, being in fact the product of the Cassini constants: $5549 = 179 \times 31$.

(ii) Sequence multiplication is commutative, e.g. (7,5)(3,2) = (3,2)(7,5).

(iii) The product of the complements of two sequences is the complement of the product of the sequences, e.g. (7,5)(3,2) = (11,59) and (2,3)(5,7) = (59,11).

(iv) The index shifts one place left or right when multiplying two noncomplementary sequences. (v) The 8 results contain just two unique Primary sequences: (59,11) and (73,1).

Properties of Sequence Products

We now prove that **sequence multiplication is commutative**, and that the **Cassini constant of the product** of two sequences is the **product of the Cassini constants** of the two sequences.

Repeating the earlier multiplication table for PS=(p,q)×(r,s):

(p,q)(r,s): 2pr+qr+ps+qs	-pr+qs	pr+qr+ps+2qs	
--------------------------	--------	--------------	--

If we swap both $p \leftrightarrow r$ and $q \leftrightarrow s$ then the terms pr and qs are unchanged; and the terms ps and qr are paired, so sequence multiplication is commutative.

The three derived terms give us the Cassini constant of the product:

$$\begin{split} \mathbf{K}_{PS} &= (2pr + qr + ps + qs)(pr + qr + ps + 2qs) - (-pr + qs)^2 \\ &= 2p^2r^2 + 2pqr^2 + 2p^2rs + 4pqrs + pqr^2 + q^2r^2 + pqrs + 2q^2rs \\ &+ p^2rs + pqrs + p^2s^2 + 2pqs^2 + pqrs + q^2rs + pqs^2 + 2q^2s^2 \\ &- p^2r^2 + 2pqrs - q^2s^2 \\ &= p^2r^2 + 3p^2rs + p^2s^2 + 3pqr^2 + 9pqrs + 3pqs^2 + q^2r^2 + 3q^2rs + q^2s^2 \\ &= (p^2 + 3pq + q^2)(r^2 + 3rs + s^2) = \mathbf{K}_P\mathbf{K}_S \ [QED] \end{split}$$

The result $K_PK_S = K_{PS}$ leads immediately to the following observation:

OEIS® A031363 is Closed Under Multiplication

An integer in A031363 is of the form $a(a+b) - b^2$ and so is the Cassini constant of ^aS_b, with root values r≥0 and s≥0 say, but not both zero.

Therefore two integers I,J in A031363 each relate to at least one Fibonacci-like sequence, say P=(p,q) where $K_P=I$ and S=(r,s) where $K_S=J$. The product of these sequences is another sequence PS=(x,y) whose Cassini constant K_{PS} is necessarily in A031363. But $K_{PS} = K_PK_S = IJ$, so IJ is in A031363. [QED]

We have shown that for any integers $p,q,r,s \ge 0$ there are integers $x,y \ge 0$ such that $(x^2 + 3xy + y^2)=(p^2 + 3pq + q^2)(r^2 + 3rs + s^2)$. Next we work out how to find x,y in terms of p,q,r,s.

Root Values and Index Origin of a Sequence Product

(p,q):	-(3p+q)	2p+q	-р	[p+q]	q	p+2q	p+3q
(p,q)(r,s):		–(3pr+qr+ps)	(N/A)	-pr+qs	(N/A)	qr+ps+3qs	

The table for the multiplication of P=(p,q) by S=(r,s) is:

Because each product term derives from an alternate pair, the results to the right are always positive and the results to the left alternate positive and negative. The critical term is (-pr + qs), i.e. the one "under" the origin of (p,q) because it is the only one derived from terms of opposite signs (root terms).

If (-pr + qs) = 0 then pr = qs.

We need the following result from number theory, where "a|b" is notation for "a divides b": "*if x|yz but x and y are relatively prime then x|z*". Let (p,q)= λ (p',q') where λ is the hcf of p and q; and let (r,s)= μ (r',s') where μ is the hcf of r and s. Then p'r'=q's', so p'|q's', but p' and q' are relatively prime so p'|s'; similarly s'|p'r' but r' and s' are relatively prime so s'|p'. Hence p'=s' and q'=r', so (p',q')=(s',r') =T say. Therefore P= λ T and S= μ T', so:

P and **S** are scalar multiples of complementary sequences, and the product **PS=(\lambda\mu K_T)F** is a scalar multiple of **F** – with origin [0] unshifted in the table.

But generally, multiplication causes the origin to shift one place in the table:

If (-pr + qs) < 0 it is the *left* of the pair with opposite signs so has index "-1", the root values are (pr - qs),(qr + ps + 3qs). The origin shifts one place *right*.

If (-pr + qs) > 0 it is the right of the pair with opposite signs so has index "+1",
the root values are (3pr + qr + ps),(qs - pr). The origin shifts one place left.

In either non-zero case |pr - qs| is one of the root values. Say it is x, then y can be calculated from $x^2 + 3xy + y^2 = K$ (where $K=K_{PS}$), giving the quadratic: $y^2 + 3xy + x^2 - K = 0$ and $y = (-3x \pm \sqrt{9x^2 - 4(x^2 - K)})/2 = (-3x \pm \sqrt{(5x^2 + 4K)})/2$. Note that $(5x^2 + 4K)$ must be a perfect square, and turns out to be $(3x + 2y)^2$.

I.e. the root values of (p,q)(r,s) are x=|pr-qs| and $y = (-3x + \sqrt{5x^2 + 4K_{PS}})/2$.

Using the examples of sequence multiplication in the earlier table: K=5549 and (7,5)(3,2) gives x=11 and y=59 while (7,5)(2,3) gives x=|-1|=1 and y=73.

Product of Two Primary Sequences

The product of two primary sequences may or may not be a primary sequence. If p>q and r>s then -pr+qs<0. For the product to be primary we need: pr-qs > qr+ps+3qs i.e. pr > qr+ps+4qs, which happens when both p is sufficiently greater than q and r is sufficiently greater than s.

For example: (3,1)(3,1)=(8,9) is secondary but (4,1)(3,1)=(11,10) is primary.

Further: (10,1)(3,2)=(28,29) is secondary and (12,1)(3,2)=(34,33) is primary, while the middle product (11,1)(3,2)=(31,31) is the scalar multiple 31(1,1). This is because (11,1) is itself the product (2,3)(1,1), so the combination gives a product of complementary sequences: (3,2)(2,3)(1,1) = 31(1,1) where $31=_{3}K_{2}$.

We rearranged the terms above using commutativity and the following result:

Sequence Multiplication is Associative

We show that ((p,q)(r,s))(u,v) = (p,q)((r,s)(u,v)):

For ((p,q)(r,s))(u,v) we get:

(p,q):	-(3p-	⊦q)		2p+q	-р	[p+q]	q	p+20	7	p+3q
(p,q)(r,s):			-(3	3pr+qr+ps)	(N/A)	-pr+qs	(N/A)	qr+ps+	3qs	
((p,q)(r,s))	(u,v):			–(3pr+qr+	-ps)u	(N/A)	(–pr+	qs)u +		
	+ (-pr+0		ys)v		(qr+ps	+3qs)v				

For (p,q)((r,s)(u,v)) we commute to ((r,s)(u,v))(p,q):

(r <i>,</i> s):	-(3r+	s)		2r+s	-r	[r+s]	S	r+2s		r+3s
(r,s)(u,v):	•••		-(31	ru+su+rv)	(N/A)	-ru+sv	(N/A)	su+rv+3	Bsv	
((r,s)(u,v))	(p,q):			–(3ru+sı	ı+rv)p	(N/A)	(−ru-	⊦sv)p		
				+ (-ru+	·sv)q		(su+rv	+3sv)q		

Being -(3pru + qru + psu + prv - qsv) and (-pru + qsu + qrv + psv + 3qsv), the two derived terms are the same for both products. They may not be the roots but they do define the sequences, so ((p,q)(r,s))(u,v) = (p,q)((r,s)(u,v)). [QED]

The Product of the Complements of Sequences

We can now prove what we saw from the examples in the earlier table: The **product of the complements** of two sequences is the **complement of the product** of the sequences, or (PS)'=P'S': if (a,b)(c,d)=(x,y) then (b,a)(d,c)=(y,x), which commutes to (y,x)=(d,c)(b,a) and (PS)'=S'P'.

Suppose (-ac + bd) < 0. (A similar argument applies if (-ac + bd) > 0.)

For the complement of the product, let p=a, q=b, r=c, s=d. Then (-pr+qs)=(-ac+bd)<0, giving roots (pr - qs), (qr + ps + 3qs) which become (ac - bd), (bc + ad + 3bd) and so the complement of the product has root values (bc + ad + 3bd), (ac - bd).

For the product of the complements (b,a)(d,c), let p=b, q=a, r=d, s=c. Then (-pr+qs)=(-bd+ac)>0, giving roots (3pr + qr + ps),(qs - pr) which become (3bd + ad + bc),(ac - bd). These are the same as above. [QED]

We can extend this to three or more sequences, i.e. (PSU)' = U'S'P': (PSU)' = ((PS)U)' = (PS)'U' = (P'S')U' = P'S'U' = U'S'P'.

Terminology/Classification of Sequences

Having looked at sequence multiplication we next turn to Factorisation, and will use the following terminology:

A **prime sequence** is one with a prime Cassini constant, i.e. one which is in A038872. Its starting and root values are necessarily relatively prime.

A **relatively prime sequence** has relatively prime starting and root values and its Cassini constant is in A089270. This may or may not be prime. A prime sequence is also a relatively prime sequence.

We previously defined a **scalar multiple** sequence as one in which every term has a common factor λ . Its Cassini constant has the factor λ^2 , and is in A031363 but not A038872 (the prime Cassini constants), and may or may not be in A089270. Scalar multiple sequences are mutually exclusive with the relatively prime sequences (including prime sequences).

Sequence Factorisation and Number Theory Conjectures

If a sequence S has sequence factors X and Y then $K_S=K_XK_Y$, so to factorise S we look at the numerical factors of K_S . Since different sequences can have the same Cassini constant, K_S alone is not enough – we need the root values of S.

If we know the root (or starting) values of a sequence we can pull out any common factor and express the sequence as λS , or $\lambda(r,s)$ where r and s are relatively prime, and its Cassini constant is $\lambda^2 K_S$.

A computer program generated Cassini constants for all starting values a=r+s from 1 to 10,000 and $b \le a/2$ ($r \ge s$). The results included 3,317,555 prime numbers, the last being for (r,s)=(5003,4997) giving prime K=124,999,991. There were **no** duplicate primes, which suggests:

Conjecture #1

If K=(r² + 3rs + s²) is a prime > 5, then r>s>0 are uniquely determined.

In other words, **a prime Cassini constant** (a number in OEIS[®] A038872) **corresponds to just one pair of complementary sequences (r,s) and (s,r)**, or if K=5 to the Lucas sequence (r,s)=(1,1).

For $_{r}K_{s}$ to be prime r and s must be relatively prime, but it is neither necessary nor sufficient that either or both be prime; for example: $_{3}K_{2}=31$, $_{4}K_{3}=61$ and $_{15}K_{4}=421$ are all prime, while $_{7}K_{2}=95$, $_{8}K_{5}=209$ and $_{9}K_{4}=205$ are all composite.

The listing earlier and Appendix A show sequences generated from relatively prime roots, with their Cassini constants. Where a constant is not prime its prime factors are shown, and we observe that each of these factors appears earlier in the listing as Cassini constants of prime sequences. This suggests:

Conjecture #2a

If u and v are relatively prime then $K=(u^2 + 3uv + v^2)$ is either prime or is the product of prime factors each of the same form.

In other words, if u,v are relatively prime but K is not prime then it has factors $K=(p^2 + 3pq + q^2)(r^2 + 3rs + s^2)$ where p,q,r,s>0; and since the pairs p,q and r,s must each be relatively prime this process can be repeated until all the factors are prime and of the same form. Appendix B shows examples of this.

Since each prime factor corresponds to a prime sequence, we have:

Conjecture #2b

Every sequence is a scalar multiple (possibly 1) of the product of prime sequences. This factorisation is unique, apart from order.

The factor 5 corresponds only to the Lucas sequence (1,1). Other prime factors each correspond to one of two complementary prime sequences. Given the root values of a sequence S we can calculate K_S, find its prime factors and form the products of all combinations of the corresponding prime sequences. One, and only one, of these will be the sequence S.

For example the sequence (12,17): ... 41 - 12 [29] 17 46 ... has K=1045 = $5 \times 11 \times 19$, where $5=_1K_1(=K_L)$, $11=_2K_1=_1K_2$ and $19=_3K_1=_1K_3$, so can result from four different sequences, in two complementary pairs: (1,1)(2,1)(3,1)=(28,3), (1,1)(2,1)(1,3)=(12,17), (1,1)(1,2)(3,1)=(17,12) and (1,1)(1,2)(1,3)=(3,28). So the required prime sequence factorisation is: (12,17)=(1,1)(2,1)(1,3). (The non-prime factorisations are (12,17)=(1,1)(13,1)=(2,1)(7,2)=(1,3)(1,6).)

The factor 5 can appear only once, since $L^2=5F$ would make a scalar multiple. Other prime factors can appear to any power, which we now consider:

Sequences with Cassini Constant (rK_s)ⁿ, where r≠s are Relatively Prime

 $({}_{r}K_{s})^{n}=({}_{s}K_{r})^{n}$ is the Cassini constant of sequences with n factors, each either (r,s) or (s,r). Of the 2ⁿ combinations there are n+1 different products of the form $(r,s)^{n-c}(s,r)^{c}$ where c=0,...,n. If c is neither 0 nor n, the product contains complementary pairs and is a scalar multiple: if c<n/2 it is $({}_{r}K_{s})^{c}(r,s)^{n-2c}$, if c>n/2 it is $({}_{r}K_{s})^{n-c}(s,r)^{2c-n}$, and if n is even and c=n/2 it is $({}_{r}K_{s})^{c}F$.

Hence only $(r,s)^n$ and its complement $(s,r)^n$ can be relatively prime sequences.

The following are examples for $(_{3}K_{1})^{2}=19^{2}$ and $(_{2}K_{1})^{3}=11^{3}$.

(₃ K ₁) ² :	$(3,1)^2 = (8,9)$	19F	$(1,3)^3 = (9,8)$	
(₂ K ₁) ³ :	$(2,1)^3 = (35,1)$	11(2,1)	11(1,2)	$(1,2)^3 = (1,35)$

Sequences Which Have A Given Cassini Constant

We can now determine the number and form of all the sequences which have a given Cassini Constant K, and hence the solutions to $(r^2 + 3rs + s^2) = K$.

A general Cassini constant, like any number, can be factorised into a product of powers of primes: Π (p_i^n_i), where "^" means "to the power of".

We start with F as the identity or null-product sequence for the first factor, with scalar multiplier λ =1 and number of sequences N=1. With p_i in ascending order we process each term p_i^n_i as follows:

1) If p_i is not a prime Cassini constant (i.e. not in A038872), then it can only arise from a scalar multiple and n_i must be even, say $n_i=2c_i$. We multiply λ by $p_i^c_i$, but the sequence factors and number of sequences N remain the same.

2) If p_i is 5, it corresponds to L=(1,1) which can appear as a sequence factor at most once; but 5 can be a numerical factor to any power.

If n_i is odd, replace the first sequence factor F by L=(1,1).

If $n_i > 1$, the other factors 5 can only arise from scalar multiples (L²=5F). Express n_i as $2c_i$ or ($2c_i + 1$) as appropriate, and multiply λ by 5^c_i . In all cases, the number of sequences N remains the same.

3) If p_i is a prime Cassini constant other than 5, then there are $(n_i + 1)$ possible choices for the next sequence factor, as discussed above. Multiply N by $(n_i + 1)$. If $n_i > 1$, all but 2 of these choices result in a further scalar multiple factor, which applies only to sequence products with that choice.

Each of the N resulting sequences can be evaluated to give a unique (r,s), and for each (r,s) there will also be a corresponding complement (s,r).

Examples

Above we looked at the cases for K=1045=5×11×19 where λ =1 and N=4: (1,1)(2,1)(3,1) , (1,1)(2,1)(1,3) , (1,1)(1,2)(3,1) and (1,1)(1,2)(1,3) , giving sequences: (28,3) , (12,17) , (17,12) and (3,28).

For K=5225=5²× 11×19, these become λ =5 and N=4: 5(2,1)(3,1)=(25,40), 5(2,1)(1,3)=(65,5), 5(1,2)(3,1)=(5,65), 5(1,2)(1,3)=(40,25).

For K=480491= $11^3 \times 19^2$ we get N=12 and the following possible sequences shown in table form, where the relatively prime results are highlighted:

(2,1) ³ (3,1) ²	11(2,1)(3,1) ²	11(1,2)(3,1) ²	(1,2) ³ (3,1) ²
= (271,350)	= (77 <i>,</i> 583)	= (539,110)	= (313,307)
19(2,1) ³	11×19(2,1)	11×19(1,2)	19(1,2) ³
= (665,19)	= (418,209)	= (209,418)	= (19 <i>,</i> 665)
$(2,1)^3(1,3)^2$	11(2,1)(1,3) ²	11(1,2)(1,3) ²	(1,2) ³ (1,3) ²
= (307,313)	= (110,539)	= (583 <i>,</i> 77)	= (350,271)

So the 12 solutions to $r^2 + 3rs + s^2 = 480491$ are the r,s and s,r pairs:, 665 19 , 583 77 , 539 110 , 418 209 , **350 271** and **313 307**.

The number of relatively prime solutions to $(r^2 + 3rs + s^2) = K$ depends only on the number of distinct prime factors other than 5 and **not** on their powers. Each such prime (a number in A045468) doubles the possibilities.

Sequences (r,s)ⁿ, where r≠s are Relatively Prime

The following tables show some powers of (2,1), with root terms highlighted:

₂ S ₁ =(2,1)	-7	5	-2	[3]	1	4	5	9	14	K=11	Primary
(2,1)(2,1)		-16	13	-3	[10]	7	17	24		K=121	Secondary
(2,1) ³			-35	[36]	1	37	38			K=1331	Primary
(2,1)4				-69	[109]	40				K=11 ⁴	Primary

Continuing:

(2,1) ⁴		-69	[109]	40			K=11 ⁴	Primary
(2 <i>,</i> 1) ⁵			-98	[367]	269		K=11 ⁵	Secondary
(2,1) ⁶		-1224	[1297]	73			K=11 ⁶	Primary
(2,1)7			-2375	[3964]	1589		K=11 ⁷	Primary
(2,1) ⁸				-3161	[13481]	10320	K=11 ⁸	Secondary
(2,1) ⁹			-42767	[46765]	3998		K=11 ⁹	Primary

Note that all the resulting sequences are relatively prime.

For $(r,s)^n$ to be a relatively prime sequence it is necessary for r and s to be relatively prime. This example suggests that this is also a sufficient condition:

Conjecture #3a

If (r,s) is a relatively prime sequence other than (1,1), (1,0) or (0,1), then $(r,s)^n$ is a relatively prime sequence.

In other words: apart from the Fibonacci sequence, which acts as an identity, and the Lucas sequence which is its own complement, every power of a relatively prime sequence is also a (different) relatively prime sequence.

Appendix C shows examples of products of pairs of relatively prime sequences. The only products which are scalar multiples are products of complementary pairs, or of sequences which appear as products earlier in the list and between them have a complementary pair of prime factors. This suggests:

Conjecture #3b

If (p,q) and (r,s) are both relatively prime sequences, then the product sequence (p,q)(r,s) is relatively prime if and only if (p,q) and (r,s) between them have no complementary pair of prime sequences as factors.

Corollary

The product of any two numbers in A089270 which are not both divisible by 5 is also in A089270.

The proof is an extension of the proof of the closure of A031363. Two integers I,J in A089270 each relate to at least one relatively prime sequence, say P where K_P =I and S where K_S =J. Each of these sequences can be factorised into a product of prime sequences. If S has any prime factor (v,u) which is the complement of a prime factor (u,v) of P it cannot be (1,1), or the Cassini constants of both sequences would be divisible by 5. Since u≠v we can create a new sequence T which has factor (u,v) instead of (v,u), and K_T =K_S unchanged. Repeat this process until T has no complement of any factor of P. The product of P and T is relatively prime by the conjecture, and so K_{PT} is in A089270. But K_{PT} = K_PK_T = K_PK_S = IJ, so IJ is in A089270. [QED]

Sequence A336403 and its Closure Under Multiplication

A336403 is the subsequence of A089270 which excludes terms divisible by 5.

The proof above applies to show **A336403 is closed under multiplication**.

A336403 can also be defined as: "Numbers $r^2 + 3rs + s^2$ not divisible by 5, with r and s relatively prime", and can be further limited: "with r > s \ge 0".

Properties of Related Sequences

A031363 consists of all, and only,	
Cassini constants. It has a natural	
one-to-one mapping with the	
Cartesian product of A000290	
(the squares) and A089270.	
A089270 is the subsequence of above	A336403 is A089270 without 5
with relatively prime roots.	and all multiples of 5.
A038872 is the prime number	A045468 is the prime number
subsequence of above.	subsequence of above, and is
	A033872 without the 5.

The numbers in A089270 all have prime factors in A038872, and the product of any numbers in A038872, except 5, each to any power is in A089270. The prime 5 may also appear, but just once, in any such product.

The numbers in A336403 all have prime factors in A045468, and the product of any numbers in A045468, each to any power, is in A336403.

Appendix A

Examples of Fibonacci-Like Sequences, Their Cassini Constants and Factors

This list is an extension of the examples shown earlier in the document, and has starting values in the range [20] through [55].

Entries are listed the order of their starting values **[a],b** with **a** the major number, with **a** and **b** relatively prime. We restrict **b** to not more than **a/2**. We show a few terms either side of the origin to start the sequence and its complement. We also show the Cassini constant K and its factors. Note that K is in ascending order *only* within each major starting value [a]. For each value of a, K has bounds: $a^2 < K < (5a^2)/4$.

... 33 -14 [19] 5 24 ... K=431 (prime) ... 32 -13 [19] 6 25 ... K=439 (prime) ... 31 -12 [19] 7 26 ... K=445 = 5 x 89 ... 30 -11 [19] 8 27 ... K=449 (prime) ... 29 -10 [19] 9 28 ... K=451 = 11 x 41 ... 39 -19 [20] 1 21 ... K=419 (prime) ... 37 -17 [20] 3 23 ... K=451 = 11 x 41 ... 33 -13 [20] 7 27 ... K=491 (prime) ... 31 -11 [20] 9 29 ... K=499 (prime) ... 41 -20 [21] 1 22 ... K=461 (prime) ... 40 -19 [21] 2 23 ... K=479 (prime) ... 38 -17 [21] 4 25 ... K=509 (prime) ... 37 -16 [21] 5 26 ... K=521 (prime) ... 34 -13 [21] 8 29 ... K=545 = 5 x 109 ... 32 -11 [21] 10 31 ... K=551 = 19 x 29 ... 43 -21 [22] 1 23 ... K=505 = 5 x 101 ... 41 -19 [22] 3 25 ... K=541 (prime) ... 39 -17 [22] 5 27 ... K=569 (prime) ... 37 -15 [22] 7 29 ... K=589 = 19 x 31 ... 35 -13 [22] 9 31 ... K=601 (prime) ... 45 -22 [23] 1 24 ... K=551 = 19 x 29 ... 44 -21 [23] 2 25 ... K=571 (prime) ... 43 -20 [23] 3 26 ... K=589 = 19 x 31 ... 42 -19 [23] 4 27 ... K=605 = 5 x 11 x 11 ... 41 -18 [23] 5 28 ... K=619 (prime) ... 40 -17 [23] 6 29 ... K=631 (prime) ... 39 -16 [23] 7 30 ... K=641 (prime) ... 38 -15 [23] 8 31 ... K=649 = 11 x 59 ... 37 -14 [23] 9 32 ... K=655 = 5 x 131 ... 36 -13 [23] 10 33 ... K=659 (prime) ... 35 -12 [23] 11 34 ... K=661 (prime) ... 47 -23 [24] 1 25 ... K=599 (prime) ... 43 -19 [24] 5 29 ... K=671 = 11 x 61 ... 41 -17 [24] 7 31 ... K=695 = 5 x 139 ... 37 -13 [24] 11 35 ... K=719 (prime) ... 49 -24 [25] 1 26 ... K=649 = 11 x 59 ... 48 -23 [25] 2 27 ... K=671 = 11 x 61 ... 47 -22 [25] 3 28 ... K=691 (prime) ... 46 -21 [25] 4 29 ... K=709 (prime) ... 44 -19 [25] 6 31 ... K=739 (prime)

... 43 -18 [25] 7 32 ... K=751 (prime) ... 42 -17 [25] 8 33 ... K=761 (prime) ... 41 -16 [25] 9 34 ... K=769 (prime) ... 39 -14 [25] 11 36 ... K=779 = 19 x 41 ... 38 -13 [25] 12 37 ... K=781 = 11 x 71 ... 51 -25 [26] 1 27 ... K=701 (prime) ... 49 -23 [26] 3 29 ... K=745 = 5 x 149 ... 47 -21 [26] 5 31 ... K=781 = 11 x 71 ... 45 -19 [26] 7 33 ... K=809 (prime) ... 43 -17 [26] 9 35 ... K=829 (prime) ... 41 -15 [26] 11 37 ... K=841 = 29 x 29 ... 53 -26 [27] 1 28 ... K=755 = 5 x 151 ... 52 -25 [27] 2 29 ... K=779 = 19 x 41 ... 50 -23 [27] 4 31 ... K=821 (prime) ... 49 -22 [27] 5 32 ... K=839 (prime) ... 47 -20 [27] 7 34 ... K=869 = 11 x 79 ... 46 -19 [27] 8 35 ... K=881 (prime) ... 44 -17 [27] 10 37 ... K=899 = 29 x 31 ... 43 -16 [27] 11 38 ... K=905 = 5 x 181 ... 41 -14 [27] 13 40 ... K=911 (prime) ... 55 -27 [28] 1 29 ... K=811 (prime) ... 53 -25 [28] 3 31 ... K=859 (prime) ... 51 -23 [28] 5 33 ... K=899 = 29 x 31 ... 47 -19 [28] 9 37 ... K=955 = 5 x 191 ... 45 -17 [28] 11 39 ... K=971 (prime) ... 43 -15 [28] 13 41 ... K=979 = 11 x 89 ... 57 -28 [29] 1 30 ... K=869 = 11 x 79 ... 56 -27 [29] 2 31 ... K=895 = 5 x 179 ... 55 -26 [29] 3 32 ... K=919 (prime) ... 54 -25 [29] 4 33 ... K=941 (prime) ... 53 -24 [29] 5 34 ... K=961 = 31 x 31 ... 52 -23 [29] 6 35 ... K=979 = 11 x 89 ... 51 -22 [29] 7 36 ... K=995 = 5 x 199 ... 50 -21 [29] 8 37 ... K=1009 (prime) ... 49 -20 [29] 9 38 ... K=1021 (prime) ... 48 -19 [29] 10 39 ... K=1031 (prime) ... 47 -18 [29] 11 40 ... K=1039 (prime) ... 46 -17 [29] 12 41 ... K=1045 = 5 x 11 x 19 ... 45 -16 [29] 13 42 ... K=1049 (prime) ... 44 -15 [29] 14 43 ... K=1051 (prime)

... 71 -35 [36] 1 37 ... K=1331 = 11 x 11 x 11 ... 67 -31 [36] 5 41 ... K=1451 (prime) ... 65 -29 [36] 7 43 ... K=1499 (prime) ... 61 -25 [36] 11 47 ... K=1571 (prime) ... 59 -23 [36] 13 49 ... K=1595 = 5 x 11 x 29 ... 55 -19 [36] 17 53 ... K=1619 (prime) ... 73 -36 [37] 1 38 ... K=1405 = 5 x 281 ... 72 -35 [37] 2 39 ... K=1439 (prime) ... 71 -34 [37] 3 40 ... K=1471 (prime) ... 70 -33 [37] 4 41 ... K=1501 = 19 x 79 ... 69 -32 [37] 5 42 ... K=1529 = 11 x 139 ... 68 -31 [37] 6 43 ... K=1555 = 5 x 311 ... 67 -30 [37] 7 44 ... K=1579 (prime) ... 66 -29 [37] 8 45 ... K=1601 (prime) ... 65 -28 [37] 9 46 ... K=1621 (prime) ... 64 -27 [37] 10 47 ... K=1639 = 11 x 149 ... 63 -26 [37] 11 48 ... K=1655 = 5 x 331 ... 62 -25 [37] 12 49 ... K=1669 (prime) ... 61 -24 [37] 13 50 ... K=1681 = 41 x 41 ... 60 -23 [37] 14 51 ... K=1691 = 19 x 89 ... 59 -22 [37] 15 52 ... K=1699 (prime) ... 58 -21 [37] 16 53 ... K=1705 = 5 x 11 x 31 ... 57 -20 [37] 17 54 ... K=1709 (prime) ... 56 -19 [37] 18 55 ... K=1711 = 29 x 59 ... 75 - 37 [38] 1 39 ... K=1481 (prime) ... 73 -35 [38] 3 41 ... K=1549 (prime) ... 71 -33 [38] 5 43 ... K=1609 (prime) ... 69 -31 [38] 7 45 ... K=1661 = 11 x 151 ... 67 -29 [38] 9 47 ... K=1705 = 5 x 11 x 31 ... 65 -27 [38] 11 49 ... K=1741 (prime) ... 63 -25 [38] 13 51 ... K=1769 = 29 x 61 ... 61 -23 [38] 15 53 ... K=1789 (prime) ... 59 -21 [38] 17 55 ... K=1801 (prime) ... 77 -38 [39] 1 40 ... K=1559 (prime) ... 76 -37 [39] 2 41 ... K=1595 = 5 x 11 x 29 ... 74 -35 [39] 4 43 ... K=1661 = 11 x 151 ... 73 -34 [39] 5 44 ... K=1691 = 19 x 89 ... 71 -32 [39] 7 46 ... K=1745 = 5 x 349 ... 70 -31 [39] 8 47 ... K=1769 = 29 x 61 ... 68 -29 [39] 10 49 ... K=1811 (prime) ... 67 -28 [39] 11 50 ... K=1829 = 31 x 59 ... 64 -25 [39] 14 53 ... K=1871 (prime) ... 62 -23 [39] 16 55 ... K=1889 (prime) ... 61 -22 [39] 17 56 ... K=1895 = 5 x 379 ... 59 -20 [39] 19 58 ... K=1901 (prime) ... 79 -39 [40] 1 41 ... K=1639 = 11 x 149 ... 77 -37 [40] 3 43 ... K=1711 = 29 x 59 ... 73 -33 [40] 7 47 ... K=1831 (prime) ... 71 -31 [40] 9 49 ... K=1879 (prime) ... 69 -29 [40] 11 51 ... K=1919 = 19 x 101 ... 67 -27 [40] 13 53 ... K=1951 (prime) ... 63 -23 [40] 17 57 ... K=1991 = 11 x 181 ... 61 -21 [40] 19 59 ... K=1999 (prime) ... 81 -40 [41] 1 42 ... K=1721 (prime) ... 80 -39 [41] 2 43 ... K=1759 (prime) ... 79 -38 [41] 3 44 ... K=1795 = 5 x 359 ... 78 - 37 [41] 4 45 ... K=1829 = 31 x 59

... 59 -29 [30] 1 31 ... K=929 (prime) ... 53 -23 [30] 7 37 ... K=1061 (prime) ... 49 -19 [30] 11 41 ... K=1109 (prime) ... 47 -17 [30] 13 43 ... K=1121 = 19 x 59 ... 61 -30 [31] 1 32 ... K=991 (prime) ... 60 -29 [31] 2 33 ... K=1019 (prime) ... 59 -28 [31] 3 34 ... K=1045 = 5 x 11 x 19 ... 58 -27 [31] 4 35 ... K=1069 (prime) ... 57 -26 [31] 5 36 ... K=1091 (prime) ... 56 -25 [31] 6 37 ... K=1111 = 11 x 101 ... 55 -24 [31] 7 38 ... K=1129 (prime) ... 54 -23 [31] 8 39 ... K=1145 = 5 x 229 ... 53 -22 [31] 9 40 ... K=1159 = 19 x 61 ... 52 -21 [31] 10 41 ... K=1171 (prime) ... 51 -20 [31] 11 42 ... K=1181 (prime) ... 50 -19 [31] 12 43 ... K=1189 = 29 x 41 ... 49 -18 [31] 13 44 ... K=1195 = 5 x 239 ... 48 -17 [31] 14 45 ... K=1199 = 11 x 109 ... 47 -16 [31] 15 46 ... K=1201 (prime) ... 63 -31 [32] 1 33 ... K=1055 = 5 x 211 ... 61 -29 [32] 3 35 ... K=1111 = 11 x 101 ... 59 -27 [32] 5 37 ... K=1159 = 19 x 61 ... 57 -25 [32] 7 39 ... K=1199 = 11 x 109 ... 55 -23 [32] 9 41 ... K=1231 (prime) ... 53 -21 [32] 11 43 ... K=1255 = 5 x 251 ... 51 -19 [32] 13 45 ... K=1271 = 31 x 41 ... 49 -17 [32] 15 47 ... K=1279 (prime) ... 65 -32 [33] 1 34 ... K=1121 = 19 x 59 ... 64 -31 [33] 2 35 ... K=1151 (prime) ... 62 -29 [33] 4 37 ... K=1205 = 5 x 241 ... 61 -28 [33] 5 38 ... K=1229 (prime) ... 59 -26 [33] 7 40 ... K=1271 = 31 x 41 ... 58 -25 [33] 8 41 ... K=1289 (prime) ... 56 -23 [33] 10 43 ... K=1319 (prime) ... 53 -20 [33] 13 46 ... K=1349 = 19 x 71 ... 52 -19 [33] 14 47 ... K=1355 = 5 x 271 ... 50 -17 [33] 16 49 ... K=1361 (prime) ... 67 -33 [34] 1 35 ... K=1189 = 29 x 41 ... 65 -31 [34] 3 37 ... K=1249 (prime) ... 63 -29 [34] 5 39 ... K=1301 (prime) ... 61 -27 [34] 7 41 ... K=1345 = 5 x 269 ... 59 -25 [34] 9 43 ... K=1381 (prime) ... 57 -23 [34] 11 45 ... K=1409 (prime) ... 55 -21 [34] 13 47 ... K=1429 (prime) ... 53 -19 [34] 15 49 ... K=1441 = 11 x 131 ... 69 -34 [35] 1 36 ... K=1259 (prime) ... 68 -33 [35] 2 37 ... K=1291 (prime) ... 67 -32 [35] 3 38 ... K=1321 (prime) ... 66 -31 [35] 4 39 ... K=1349 = 19 x 71 ... 64 -29 [35] 6 41 ... K=1399 (prime) ... 62 -27 [35] 8 43 ... K=1441 = 11 x 131 ... 61 -26 [35] 9 44 ... K=1459 (prime) ... 59 -24 [35] 11 46 ... K=1489 (prime) ... 58 -23 [35] 12 47 ... K=1501 = 19 x 79 ... 57 -22 [35] 13 48 ... K=1511 (prime) ... 54 -19 [35] 16 51 ... K=1529 = 11 x 139 ... 53 -18 [35] 17 52 ... K=1531 (prime)

... 82 - 37 [45] 8 53 ... K=2321 = 11 x 211 ... 79 -34 [45] 11 56 ... K=2399 (prime) ... 77 -32 [45] 13 58 ... K=2441 (prime) ... 76 -31 [45] 14 59 ... K=2459 (prime) ... 74 -29 [45] 16 61 ... K=2489 = 19 x 131 ... 73 -28 [45] 17 62 ... K=2501 = 41 x 61 ... 71 -26 [45] 19 64 ... K=2519 = 11 x 229 ... 68 -23 [45] 22 67 ... K=2531 (prime) ... 91 -45 [46] 1 47 ... K=2161 (prime) ... 89 -43 [46] 3 49 ... K=2245 = 5 x 449 ... 87 -41 [46] 5 51 ... K=2321 = 11 x 211 ... 85 -39 [46] 7 53 ... K=2389 (prime) ... 83 -37 [46] 9 55 ... K=2449 = 31 x 79 ... 81 -35 [46] 11 57 ... K=2501 = 41 x 61 ... 79 -33 [46] 13 59 ... K=2545 = 5 x 509 ... 77 -31 [46] 15 61 ... K=2581 = 29 x 89 ... 75 -29 [46] 17 63 ... K=2609 (prime) ... 73 -27 [46] 19 65 ... K=2629 = 11 x 239 ... 71 -25 [46] 21 67 ... K=2641 = 19 x 139 ... 93 -46 [47] 1 48 ... K=2255 = 5 x 11 x 41 ... 92 -45 [47] 2 49 ... K=2299 = 11 x 11 x 19 ... 91 -44 [47] 3 50 ... K=2341 (prime) ... 90 -43 [47] 4 51 ... K=2381 (prime) ... 89 -42 [47] 5 52 ... K=2419 = 41 x 59 ... 88 -41 [47] 6 53 ... K=2455 = 5 x 491 ... 87 -40 [47] 7 54 ... K=2489 = 19 x 131 ... 86 -39 [47] 8 55 ... K=2521 (prime) ... 85 -38 [47] 9 56 ... K=2551 (prime) ... 84 -37 [47] 10 57 ... K=2579 (prime) ... 83 -36 [47] 11 58 ... K=2605 = 5 x 521 ... 82 -35 [47] 12 59 ... K=2629 = 11 x 239 ... 81 -34 [47] 13 60 ... K=2651 = 11 x 241 ... 80 -33 [47] 14 61 ... K=2671 (prime) ... 79 -32 [47] 15 62 ... K=2689 (prime) ... 78 -31 [47] 16 63 ... K=2705 = 5 x 541 ... 77 -30 [47] 17 64 ... K=2719 (prime) ... 76 -29 [47] 18 65 ... K=2731 (prime) ... 75 -28 [47] 19 66 ... K=2741 (prime) ... 74 -27 [47] 20 67 ... K=2749 (prime) ... 73 -26 [47] 21 68 ... K=2755 = 5 x 19 x 29 ... 72 -25 [47] 22 69 ... K=2759 = 31 x 89 ... 71 -24 [47] 23 70 ... K=2761 = 11 x 251 ... 95 -47 [48] 1 49 ... K=2351 (prime) ... 91 -43 [48] 5 53 ... K=2519 = 11 x 229 ... 89 -41 [48] 7 55 ... K=2591 (prime) ... 85 -37 [48] 11 59 ... K=2711 (prime) ... 83 -35 [48] 13 61 ... K=2759 = 31 x 89 ... 79 -31 [48] 17 65 ... K=2831 = 19 x 149 ... 77 -29 [48] 19 67 ... K=2855 = 5 x 571 ... 73 -25 [48] 23 71 ... K=2879 (prime) ... 97 -48 [49] 1 50 ... K=2449 = 31 x 79 ... 96 -47 [49] 2 51 ... K=2495 = 5 x 499 ... 95 -46 [49] 3 52 ... K=2539 (prime) ... 94 -45 [49] 4 53 ... K=2581 = 29 x 89 ... 93 -44 [49] 5 54 ... K=2621 (prime) ... 92 -43 [49] 6 55 ... K=2659 (prime) ... 90 -41 [49] 8 57 ... K=2729 (prime)

... 77 -36 [41] 5 46 ... K=1861 (prime) ... 76 -35 [41] 6 47 ... K=1891 = 31 x 61 ... 75 -34 [41] 7 48 ... K=1919 = 19 x 101 ... 74 -33 [41] 8 49 ... K=1945 = 5 x 389 ... 73 -32 [41] 9 50 ... K=1969 = 11 x 179 ... 72 -31 [41] 10 51 ... K=1991 = 11 x 181 ... 71 -30 [41] 11 52 ... K=2011 (prime) ... 70 -29 [41] 12 53 ... K=2029 (prime) ... 69 -28 [41] 13 54 ... K=2045 = 5 x 409 ... 68 -27 [41] 14 55 ... K=2059 = 29 x 71 ... 67 -26 [41] 15 56 ... K=2071 = 19 x 109 ... 66 -25 [41] 16 57 ... K=2081 (prime) ... 65 -24 [41] 17 58 ... K=2089 (prime) ... 64 -23 [41] 18 59 ... K=2095 = 5 x 419 ... 63 -22 [41] 19 60 ... K=2099 (prime) ... 62 -21 [41] 20 61 ... K=2101 = 11 x 191 ... 83 -41 [42] 1 43 ... K=1805 = 5 x 19 x 19 ... 79 -37 [42] 5 47 ... K=1949 (prime) ... 73 -31 [42] 11 53 ... K=2105 = 5 x 421 ... 71 -29 [42] 13 55 ... K=2141 (prime) ... 67 -25 [42] 17 59 ... K=2189 = 11 x 199 ... 65 -23 [42] 19 61 ... K=2201 = 31 x 71 ... 85 -42 [43] 1 44 ... K=1891 = 31 x 61 ... 84 -41 [43] 2 45 ... K=1931 (prime) ... 83 -40 [43] 3 46 ... K=1969 = 11 x 179 ... 82 -39 [43] 4 47 ... K=2005 = 5 x 401 ... 81 -38 [43] 5 48 ... K=2039 (prime) ... 80 -37 [43] 6 49 ... K=2071 = 19 x 109 ... 79 -36 [43] 7 50 ... K=2101 = 11 x 191 ... 78 -35 [43] 8 51 ... K=2129 (prime) ... 77 -34 [43] 9 52 ... K=2155 = 5 x 431 ... 76 -33 [43] 10 53 ... K=2179 (prime) ... 75 -32 [43] 11 54 ... K=2201 = 31 x 71 ... 74 -31 [43] 12 55 ... K=2221 (prime) ... 73 -30 [43] 13 56 ... K=2239 (prime) ... 72 -29 [43] 14 57 ... K=2255 = 5 x 11 x 41 ... 71 -28 [43] 15 58 ... K=2269 (prime) ... 70 -27 [43] 16 59 ... K=2281 (prime) ... 69 -26 [43] 17 60 ... K=2291 = 29 x 79 ... 68 -25 [43] 18 61 ... K=2299 = 11 x 11 x 19 ... 67 -24 [43] 19 62 ... K=2305 = 5 x 461 ... 66 -23 [43] 20 63 ... K=2309 (prime) ... 65 -22 [43] 21 64 ... K=2311 (prime) ... 87 -43 [44] 1 45 ... K=1979 (prime) ... 85 -41 [44] 3 47 ... K=2059 = 29 x 71 ... 83 -39 [44] 5 49 ... K=2131 (prime) ... 81 -37 [44] 7 51 ... K=2195 = 5 x 439 ... 79 -35 [44] 9 53 ... K=2251 (prime) ... 75 -31 [44] 13 57 ... K=2339 (prime) ... 73 -29 [44] 15 59 ... K=2371 (prime) ... 71 -27 [44] 17 61 ... K=2395 = 5 x 479 ... 69 -25 [44] 19 63 ... K=2411 (prime) ... 67 -23 [44] 21 65 ... K=2419 = 41 x 59 ... 89 -44 [45] 1 46 ... K=2069 (prime) ... 88 -43 [45] 2 47 ... K=2111 (prime) ... 86 -41 [45] 4 49 ... K=2189 = 11 x 199 ... 83 -38 [45] 7 52 ... K=2291 = 29 x 79

... 100 -47 [53] 6 59 ... K=3091 = 11 x 281 ... 99 -46 [53] 7 60 ... K=3131 = 31 x 101 ... 98 -45 [53] 8 61 ... K=3169 (prime) ... 97 -44 [53] 9 62 ... K=3205 = 5 x 641 ... 96 -43 [53] 10 63 ... K=3239 = 41 x 79 ... 95 -42 [53] 11 64 ... K=3271 (prime) ... 94 -41 [53] 12 65 ... K=3301 (prime) ... 93 -40 [53] 13 66 ... K=3329 (prime) ... 92 -39 [53] 14 67 ... K=3355 = 5 x 11 x 61 ... 91 -38 [53] 15 68 ... K=3379 = 31 x 109 ... 90 -37 [53] 16 69 ... K=3401 = 19 x 179 ... 89 -36 [53] 17 70 ... K=3421 = 11 x 311 ... 88 -35 [53] 18 71 ... K=3439 = 19 x 181 ... 87 -34 [53] 19 72 ... K=3455 = 5 x 691 ... 86 -33 [53] 20 73 ... K=3469 (prime) ... 85 -32 [53] 21 74 ... K=3481 = 59 x 59 ... 84 -31 [53] 22 75 ... K=3491 (prime) ... 83 -30 [53] 23 76 ... K=3499 (prime) ... 82 -29 [53] 24 77 ... K=3505 = 5 x 701 ... 81 -28 [53] 25 78 ... K=3509 = 11 x 11 x 29 ... 80 -27 [53] 26 79 ... K=3511 (prime) ... 107 -53 [54] 1 55 ... K=2969 (prime) ... 103 -49 [54] 5 59 ... K=3161 = 29 x 109 ... 101 -47 [54] 7 61 ... K=3245 = 5 x 11 x 59 ... 97 -43 [54] 11 65 ... K=3389 (prime) ... 95 -41 [54] 13 67 ... K=3449 (prime) ... 91 -37 [54] 17 71 ... K=3545 = 5 x 709 ... 89 -35 [54] 19 73 ... K=3581 (prime) ... 85 -31 [54] 23 77 ... K=3629 = 19 x 191 ... 83 -29 [54] 25 79 ... K=3641 = 11 x 331 ... 109 -54 [55] 1 56 ... K=3079 (prime) ... 108 -53 [55] 2 57 ... K=3131 = 31 x 101 ... 107 -52 [55] 3 58 ... K=3181 (prime) ... 106 -51 [55] 4 59 ... K=3229 (prime) ... 104 -49 [55] 6 61 ... K=3319 (prime) ... 103 -48 [55] 7 62 ... K=3361 (prime) ... 102 -47 [55] 8 63 ... K=3401 = 19 x 179 ... 101 -46 [55] 9 64 ... K=3439 = 19 x 181 ... 98 -43 [55] 12 67 ... K=3541 (prime) ... 97 -42 [55] 13 68 ... K=3571 (prime) ... 96 -41 [55] 14 69 ... K=3599 = 59 x 61 ... 94 -39 [55] 16 71 ... K=3649 = 41 x 89 ... 93 -38 [55] 17 72 ... K=3671 (prime) ... 92 -37 [55] 18 73 ... K=3691 (prime) ... 91 -36 [55] 19 74 ... K=3709 (prime) ... 89 -34 [55] 21 76 ... K=3739 (prime) ... 87 -32 [55] 23 78 ... K=3761 (prime) ... 86 -31 [55] 24 79 ... K=3769 (prime) ... 84 -29 [55] 26 81 ... K=3779 (prime) ... 83 -28 [55] 27 82 ... K=3781 = 19 x 199 ... 111 -55 [56] 1 57 ... K=3191 (prime) ... 109 -53 [56] 3 59 ... K=3295 = 5 x 659 ... 107 -51 [56] 5 61 ... K=3391 (prime) ... 103 -47 [56] 9 65 ... K=3559 (prime) ... 101 -45 [56] 11 67 ... K=3631 (prime) ... 99 -43 [56] 13 69 ... K=3695 = 5 x 739

... 89 -40 [49] 9 58 ... K=2761 = 11 x 251 ... 88 -39 [49] 10 59 ... K=2791 (prime) ... 87 -38 [49] 11 60 ... K=2819 (prime) ... 86 - 37 [49] 12 61 ... K=2845 = 5 x 569 ... 85 -36 [49] 13 62 ... K=2869 = 19 x 151 ... 83 -34 [49] 15 64 ... K=2911 = 41 x 71 ... 82 -33 [49] 16 65 ... K=2929 = 29 x 101 ... 81 -32 [49] 17 66 ... K=2945 = 5 x 19 x 31 ... 80 -31 [49] 18 67 ... K=2959 = 11 x 269 ... 79 -30 [49] 19 68 ... K=2971 (prime) ... 78 -29 [49] 20 69 ... K=2981 = 11 x 271 ... 76 -27 [49] 22 71 ... K=2995 = 5 x 599 ... 75 -26 [49] 23 72 ... K=2999 (prime) ... 74 -25 [49] 24 73 ... K=3001 (prime) ... 99 -49 [50] 1 51 ... K=2549 (prime) ... 97 -47 [50] 3 53 ... K=2641 = 19 x 139 ... 93 -43 [50] 7 57 ... K=2801 (prime) ... 91 -41 [50] 9 59 ... K=2869 = 19 x 151 ... 89 -39 [50] 11 61 ... K=2929 = 29 x 101 ... 87 -37 [50] 13 63 ... K=2981 = 11 x 271 ... 83 -33 [50] 17 67 ... K=3061 (prime) ... 81 -31 [50] 19 69 ... K=3089 (prime) ... 79 -29 [50] 21 71 ... K=3109 (prime) ... 77 -27 [50] 23 73 ... K=3121 (prime) ... 101 -50 [51] 1 52 ... K=2651 = 11 x 241 ... 100 -49 [51] 2 53 ... K=2699 (prime) ... 98 -47 [51] 4 55 ... K=2789 (prime) ... 97 -46 [51] 5 56 ... K=2831 = 19 x 149 ... 95 -44 [51] 7 58 ... K=2909 (prime) ... 94 -43 [51] 8 59 ... K=2945 = 5 x 19 x 31 ... 92 -41 [51] 10 61 ... K=3011 (prime) ... 91 -40 [51] 11 62 ... K=3041 (prime) ... 89 -38 [51] 13 64 ... K=3095 = 5 x 619 ... 88 -37 [51] 14 65 ... K=3119 (prime) ... 86 -35 [51] 16 67 ... K=3161 = 29 x 109 ... 83 -32 [51] 19 70 ... K=3209 (prime) ... 82 -31 [51] 20 71 ... K=3221 (prime) ... 80 -29 [51] 22 73 ... K=3239 = 41 x 79 ... 79 -28 [51] 23 74 ... K=3245 = 5 x 11 x 59 ... 77 -26 [51] 25 76 ... K=3251 (prime) ... 103 -51 [52] 1 53 ... K=2755 = 5 x 19 x 29 ... 101 -49 [52] 3 55 ... K=2851 (prime) ... 99 -47 [52] 5 57 ... K=2939 (prime) ... 97 -45 [52] 7 59 ... K=3019 (prime) ... 95 -43 [52] 9 61 ... K=3091 = 11 x 281 ... 93 -41 [52] 11 63 ... K=3155 = 5 x 631 ... 89 - 37 [52] 15 67 ... K=3259 (prime) ... 87 -35 [52] 17 69 ... K=3299 (prime) ... 85 -33 [52] 19 71 ... K=3331 (prime) ... 83 -31 [52] 21 73 ... K=3355 = 5 x 11 x 61 ... 81 -29 [52] 23 75 ... K=3371 (prime) ... 79 -27 [52] 25 77 ... K=3379 = 31 x 109 ... 105 -52 [53] 1 54 ... K=2861 (prime) ... 104 -51 [53] 2 55 ... K=2911 = 41 x 71 ... 103 -50 [53] 3 56 ... K=2959 = 11 x 269 ... 102 -49 [53] 4 57 ... K=3005 = 5 x 601 ... 101 -48 [53] 5 58 ... K=3049 (prime)

Appendix B

Factorisation of Cassini Constants

This is a list of Cassini constants in numerical order and, if not prime, their breakdown into the first prime factor (and its power) and the quotient (if any). As per Conjecture 2a, both the first factor and the quotient should appear as a constant earlier in the list, enabling a complete factorisation into primes.

1	341 = 11 x 31	695 = 5 x 139	1055 = 5 x 211
5 is prime	349 is prime	701 is prime	1061 is prime
11 is prime	355 = 5 x 71	709 is prime	1069 is prime
19 is prime	359 is prime	719 is prime	1091 is prime
29 is prime	361 = 19^2	739 is prime	1109 is prime
31 is prime	379 is prime	745 = 5 x 149	1111 = 11 x 101
41 is prime	389 is prime	751 is prime	1121 = 19 x 59
55 = 5 x 11	395 = 5 x 79	755 = 5 x 151	1129 is prime
59 is prime	401 is prime	761 is prime	1145 = 5 x 229
61 is prime	409 is prime	769 is prime	1151 is prime
71 is prime	419 is prime	779 = 19 x 41	1159 = 19 x 61
79 is prime	421 is prime	781 = 11 x 71	1171 is prime
89 is prime	431 is prime	809 is prime	1181 is prime
95 = 5 x 19	439 is prime	811 is prime	1189 = 29 x 41
101 is prime	445 = 5 x 89	821 is prime	1195 = 5 x 239
109 is prime	449 is prime	829 is prime	1199 = 11 x 109
121 = 11^2	451 = 11 x 41	839 is prime	1201 is prime
131 is prime	461 is prime	841 = 29^2	1205 = 5 x 241
139 is prime	479 is prime	859 is prime	1229 is prime
145 = 5 x 29	491 is prime	869 = 11 x 79	1231 is prime
149 is prime	499 is prime	881 is prime	1249 is prime
151 is prime	505 = 5 x 101	895 = 5 x 179	1255 = 5 x 251
155 = 5 x 31	509 is prime	899 = 29 x 31	1259 is prime
179 is prime	521 is prime	905 = 5 x 181	1271 = 31 x 41
181 is prime	541 is prime	911 is prime	1279 is prime
191 is prime	545 = 5 x 109	919 is prime	1289 is prime
199 is prime	551 = 19 x 29	929 is prime	1291 is prime
205 = 5 x 41	569 is prime	941 is prime	1301 is prime
209 = 11 x 19	571 is prime	955 = 5 x 191	1319 is prime
211 is prime	589 = 19 x 31	961 = 31^2	1321 is prime
229 is prime	599 is prime	971 is prime	1331 = 11^3
239 is prime	601 is prime	979 = 11 x 89	1345 = 5 x 269
241 is prime	605 = 5 x 121	991 is prime	1349 = 19 x 71
251 is prime	619 is prime	995 = 5 x 199	1355 = 5 x 271
269 is prime	631 is prime	1009 is prime	1361 is prime
271 is prime	641 is prime	1019 is prime	1381 is prime
281 is prime	649 = 11 x 59	1021 is prime	1399 is prime
295 = 5 x 59	655 = 5 x 131	1031 is prime	1405 = 5 x 281
305 = 5 x 61	659 is prime	1039 is prime	1409 is prime
311 is prime	661 is prime	1045 = 5 x 209	1429 is prime
319 = 11 x 29	671 = 11 x 61	1049 is prime	1439 is prime
331 is prime	691 is prime	1051 is prime	1441 = 11 x 131

1451 is prime	1951 is prime	2449 = 31 x 79	2969 is prime
1459 is prime	1969 = 11 x 179	2455 = 5 x 491	2971 is prime
1471 is prime	1979 is prime	2459 is prime	2981 = 11 x 271
1481 is prime	1991 = 11 x 181	2489 = 19 x 131	2995 = 5 x 599
1489 is prime	1999 is prime	2495 = 5 x 499	2999 is prime
1499 is prime	2005 = 5 x 401	2501 = 41 x 61	3001 is prime
1501 = 19 x 79	2011 is prime	2519 = 11 x 229	3005 = 5 x 601
1511 is prime	2029 is prime	2521 is prime	3011 is prime
1529 = 11 x 139	2039 is prime	2531 is prime	3019 is prime
1531 is prime	2045 = 5 x 409	2539 is prime	3041 is prime
1549 is prime	2059 = 29 x 71	2545 = 5 x 509	3049 is prime
1555 = 5 x 311	2069 is prime	2549 is prime	3061 is prime
1559 is prime	2071 = 19 x 109	2551 is prime	3079 is prime
1571 is prime	2081 is prime	2579 is prime	3089 is prime
1579 is prime	2089 is prime	2581 = 29 x 89	3091 = 11 x 281
1595 = 5 x 319	2095 = 5 x 419	2591 is prime	3095 = 5 x 619
1601 is prime	2099 is prime	2605 = 5 x 521	3109 is prime
1609 is prime	2101 = 11 x 191	2609 is prime	3119 is prime
1619 is prime	2105 = 5 x 421	2621 is prime	3121 is prime
1621 is prime	2111 is prime	2629 = 11 x 239	3131 = 31 x 101
1639 = 11 x 149	2129 is prime	2641 = 19 x 139	3155 = 5 x 631
1655 = 5 x 331	2131 is prime	2651 = 11 x 241	3161 = 29 x 109
1661 = 11 x 151	2141 is prime	2659 is prime	3169 is prime
1669 is prime	2155 = 5 x 431	2671 is prime	3181 is prime
1681 = 41^2	2161 is prime	2689 is prime	3191 is prime
1691 = 19 x 89	2179 is prime	2699 is prime	3205 = 5 x 641
1699 is prime	2189 = 11 x 199	2705 = 5 x 541	3209 is prime
1705 = 5 x 341	2195 = 5 x 439	2711 is prime	3221 is prime
1709 is prime	2201 = 31 x 71	2719 is prime	3229 is prime
1711 = 29 x 59	2221 is prime	2729 is prime	3239 = 41 x 79
1721 is prime	2239 is prime	2731 is prime	3245 = 5 x 649
1741 is prime	2245 = 5 x 449	2741 is prime	3251 is prime
1745 = 5 x 349	2251 is prime	2749 is prime	3259 is prime
1759 is prime	2255 = 5 x 451	2755 = 5 x 551	3271 is prime
1769 = 29 x 61	2269 is prime	2759 = 31 x 89	3295 = 5 x 659
1789 is prime	2281 is prime	2761 = 11 x 251	3299 is prime
1795 = 5 x 359	2291 = 29 x 79	2789 is prime	3301 is prime
1801 is prime	2299 = 11^2 x 19	2791 is prime	3305 = 5 x 661
1805 = 5 x 361	2305 = 5 x 461	2801 is prime	3319 is prime
1811 is prime	2309 is prime	2819 is prime	3329 is prime
1829 = 31 x 59	2311 is prime	2831 = 19 x 149	3331 is prime
1831 is prime	2321 = 11 x 211	2845 = 5 x 569	3355 = 5 x 671
1861 is prime	2339 is prime	2851 is prime	3359 is prime
1871 is prime	2341 is prime	2855 = 5 x 571	3361 is prime
1879 is prime	2351 is prime	2861 is prime	3371 is prime
1889 is prime	2371 is prime	2869 = 19 x 151	3379 = 31 x 109
1891 = 31 x 61	2381 is prime	2879 is prime	3389 is prime
1895 = 5 x 379	2389 is prime	2909 is prime	3391 is prime
1901 is prime	2395 = 5 x 479	2911 = 41 x 71	3401 = 19 x 179
1919 = 19 x 101	2399 is prime	2929 = 29 x 101	3421 = 11 x 311
1931 is prime	2411 is prime	2939 is prime	3439 = 19 x 181
1945 = 5 x 389	2419 = 41 x 59	2945 = 5 x 589	3449 is prime
1949 is prime	2441 is prime	2959 = 11 x 269	3455 = 5 x 691

3461 is prime	4001 is prime	4495 = 5 x 899	5039 is prime
3469 is prime	4009 = 19 x 211	4499 = 11 x 409	5041 = 71^2
3481 = 59^2	4019 is prime	4519 is prime	5045 = 5 x 1009
3491 is prime	4021 is prime	4541 = 19 x 239	5051 is prime
3499 is prime	4031 = 29 x 139	4549 is prime	5059 is prime
3505 = 5 x 701	4045 = 5 x 809	4555 = 5 x 911	5071 = 11 x 461
3509 = 11^2 x 29	4049 is prime	4561 is prime	5081 is prime
3511 is prime	4051 is prime	4579 = 19 x 241	5095 = 5 x 1019
3529 is prime	4055 = 5 x 811	4591 is prime	5099 is prime
3539 is prime	4061 = 31 x 131	4595 = 5 x 919	5101 is prime
3541 is prime	4079 is prime	4609 = 11 x 419	5105 = 5 x 1021
3545 = 5 x 709	4091 is prime	4619 = 31 x 149	5111 = 19 x 269
3559 is prime	4099 is prime	4621 is prime	5119 is prime
3571 is prime	4105 = 5 x 821	4631 = 11 x 421	5149 = 19 x 271
3581 is prime	4111 is prime	4639 is prime	5155 = 5 x 1031
3595 = 5 x 719	4129 is prime	4645 = 5 x 929	5171 is prime
3599 = 59 x 61	4139 is prime	4649 is prime	5179 is prime
3629 = 19 x 191	4141 = 41 x 101	4651 is prime	5189 is prime
3631 is prime	4145 = 5 x 829	4661 = 59 x 79	5191 = 29 x 179
3641 = 11 x 331	4159 is prime	4679 is prime	5195 = 5 x 1039
3649 = 41 x 89	4169 = 11 x 379	4681 = 31 x 151	5209 is prime
3659 is prime	4189 = 59 x 71	4691 is prime	5231 is prime
3671 is prime	4195 = 5 x 839	4705 = 5 x 941	5245 = 5 x 1049
3691 is prime	4201 is prime	4721 is prime	5249 = 29 x 181
3695 = 5 x 739	$4205 = 5 \times 841$	4729 is prime	5251 = 59 x 89
3701 is prime	4211 is prime	4723 is prime $4741 = 11 \times 431$	5255 = 5 x 1051
3709 is prime	4219 is prime	4751 is prime	5261 is prime
3719 is prime	4229 is prime	4759 is prime	5269 = 11 x 479
3721 = 61^2	4231 is prime	4769 = 19 x 251	5279 is prime
3739 is prime	4241 is prime	4789 is prime	5281 is prime
$3751 = 11^2 \times 31$	4259 is prime	4799 is prime	5305 = 5 x 1061
$3751 = 11 2 \times 51$ $3755 = 5 \times 751$	4261 is prime	4801 is prime	
3761 is prime	4271 is prime	4805 = 5 x 961	5309 is prime 5339 = 19 x 281
•			
3769 is prime	4279 = 11 x 389	4819 = 61 x 79	$5345 = 5 \times 1069$
3779 is prime	4289 is prime	4829 = 11 x 439	5351 is prime
3781 = 19 x 199	4295 = 5 x 859	4831 is prime	5371 = 41 x 131
3799 = 29 x 131	4309 = 31 x 139	4855 = 5 x 971	5381 is prime
3805 = 5 x 761	4321 = 29 x 149	4861 is prime	5399 is prime
3821 is prime	4331 = 61 x 71	4871 is prime	5401 = 11 x 491
3839 = 11 x 349	4339 is prime	4889 is prime	5419 is prime
3845 = 5 x 769	4345 = 5 x 869	4895 = 5 x 979	5429 = 61 x 89
3851 is prime	4349 is prime	4909 is prime	5431 is prime
3881 is prime	4351 = 19 x 229	4919 is prime	5441 is prime
3889 is prime	4379 = 29 x 151	4931 is prime	5449 is prime
3895 = 5 x 779	4391 is prime	4939 = 11 x 449	5455 = 5 x 1091
3905 = 5 x 781	4405 = 5 x 881	4951 is prime	5471 is prime
3911 is prime	4409 is prime	4955 = 5 x 991	5479 is prime
3919 is prime	4411 = 11 x 401	4961 = 11^2 x 41	5489 = 11 x 499
3929 is prime	4421 is prime	4969 is prime	5501 is prime
3931 is prime	4441 is prime	4999 is prime	5519 is prime
3949 = 11 x 359	4451 is prime	5009 is prime	5521 is prime
3971 = 11 x 361	4469 = 41 x 109	5011 is prime	5531 is prime
3989 is prime	4481 is prime	5021 is prime	5539 = 29 x 191

5545 = 5 x 1109	6091 is prime	6589 = 11 x 599	7121 is prime
5549 = 31 x 179	6101 is prime	6595 = 5 x 1319	7129 is prime
5555 = 5 x 1111	6109 = 41 x 149	6599 is prime	7139 = 11^2 x 59
5569 is prime	6119 = 29 x 211	6605 = 5 x 1321	7145 = 5 x 1429
5581 is prime	6121 is prime	6611 = 11 x 601	7151 is prime
5591 is prime	6131 is prime	6619 is prime	7159 is prime
5599 = 11 x 509	6145 = 5 x 1229	6631 = 19 x 349	7171 = 71 x 101
5605 = 5 x 1121	6151 is prime	6641 = 29 x 229	7195 = 5 x 1439
5609 = 71 x 79	6155 = 5 x 1231	6649 = 61 x 109	7201 = 19 x 379
5611 = 31 x 181	6161 = 61 x 101	6655 = 5 x 1331	7205 = 5 x 1441
5639 is prime	6169 = 31 x 199	6659 is prime	7211 is prime
5641 is prime	6191 = 41 x 151	6661 is prime	7219 is prime
5645 = 5 x 1129	6199 is prime	6679 is prime	7229 is prime
5651 is prime	6211 is prime	6689 is prime	7249 = 11 x 659
5659 is prime	6221 is prime	6691 is prime	7255 = 5 x 1451
5669 is prime	6229 is prime	6701 is prime	7271 = 11 x 661
5689 is prime	6241 = 79^2	6709 is prime	7279 = 29 x 251
5699 = 41 x 139	6245 = 5 x 1249	6719 is prime	7295 = 5 x 1459
5701 is prime	6259 = 11 x 569	6745 = 5 x 1349	7309 is prime
5711 is prime	6269 is prime	6761 is prime	, 7321 is prime
5731 = 11 x 521	6271 is prime	6779 is prime	7331 is prime
5741 is prime	6281 = 11 x 571	6781 is prime	7339 = 41 x 179
5749 is prime	6289 = 19 x 331	6791 is prime	7349 is prime
5755 = 5 x 1151	6295 = 5 x 1259	6805 = 5 x 1361	7351 is prime
5771 = 29 x 199	6299 is prime	6809 = 11 x 619	7355 = 5 x 1471
5779 is prime	6301 is prime	6821 = 19 x 359	7369 is prime
5791 is prime	6311 is prime	6829 is prime	7381 = 11^2 x 61
5795 = 5 x 1159	6319 = 71 x 89	6841 is prime	7391 = 19 x 389
5801 is prime	6329 is prime	6859 = 19^3	7405 = 5 x 1481
5821 is prime	6355 = 5 x 1271	6869 is prime	7409 = 31 x 239
5839 is prime	6359 is prime	6871 is prime	7411 is prime
5849 is prime	6361 is prime	6899 is prime	7421 = 41 x 181
5851 is prime	6379 is prime	6905 = 5 x 1381	7445 = 5 x 1489
5855 = 5 x 1171	6389 is prime	6911 is prime	7451 is prime
5861 is prime	6395 = 5 x 1279	6931 = 29 x 239	, 7459 is prime
5869 is prime	6421 is prime	6941 = 11 x 631	7471 = 31 x 241
5879 is prime	6431 = 59 x 109	6949 is prime	7481 is prime
5881 is prime	6445 = 5 x 1289	6959 is prime	, 7489 is prime
5905 = 5 x 1181	6449 is prime	6961 is prime	7495 = 5 x 1499
5909 = 19 x 311	6451 is prime	6971 is prime	7499 is prime
5921 = 31 x 191	6455 = 5 x 1291	6989 = 29 x 241	7505 = 5 x 1501
5939 is prime	6469 is prime	6991 is prime	7529 is prime
5945 = 5 x 1189	6479 = 11 x 589	6995 = 5 x 1399	, 7541 is prime
5951 = 11 x 541	6481 is prime	7001 is prime	7549 is prime
5959 = 59 x 101	6491 is prime	7019 is prime	7555 = 5 x 1511
5981 is prime	6505 = 5 x 1301	7031 = 79 x 89	7559 is prime
5995 = 5 x 1199	6521 is prime	7039 is prime	7561 is prime
6005 = 5 x 1201	6529 is prime	7045 = 5 x 1409	7589 is prime
6011 is prime	6541 = 31 x 211	7051 = 11 x 641	7591 is prime
6029 is prime	6551 is prime	7069 is prime	7601 = 11 x 691
6061 = 11 x 551	6569 is prime	7079 is prime	7619 = 19 x 401
6079 is prime	6571 is prime	7099 = 31 x 229	7621 is prime
6089 is prime	6581 is prime	7109 is prime	
·	•		

Appendix C

Examples of Sequences Products

Here is a list of sequence products $(p,q) \times (r,s)$ for relatively prime sequences, where p>q (the complements rule can be used to obtain products for p<q). They are shown in ascending order of N=p+q+r+s; within that in descending order of p+q not less than r+s; then in descending order of p not less than q; and then all r,s in pairs (r,s) and (s,r) in descending order of r. Where p+q=r+s we eliminate duplicates caused by p<r (commutative) or p<s (complementary). Where the resulting roots are not relatively prime, the relevant multiple is also shown, e.g. $K_{x,y} : (p,q) \times (r,s) = (x,y) = \lambda(u,v)$. For each value of N, K has bounds: $5((N-2)^2) < K < (25N^4)/256 < (N^4)/10$. For example, for N=100 the actual limits are 48,505 <= K <= 9,740,641.

```
95:(3,1) \times (1,1) = (2,7)
 121:(2,1) \times (2,1) = (3,7)
 121:(2,1) \times (1,2) = (11,0) = 11(1,0)
145:(4,1) \times (1,1) = (3,8)
155:(3,2) \times (1,1) = (1,11)
 209:(3,1) \times (2,1) = (5,8)
209:(3,1) \times (1,2) = (1,13)
205:(5,1) \times (1,1) = (4,9)
319:(4,1) \times (2,1) = (7,9)
319:(4,1) \times (1,2) = (2,15)
341 : (3,2) x (2,1) = (4,13)
341:(3,2) \times (1,2) = (17,1)
361:(3,1)\times(3,1)=(8,9)
 361:(3,1) \times (1,3) = (19,0) = 19(1,0)
275:(6,1) \times (1,1) = (5,10) = 5(1,2)
295 : (5,2) x (1,1) = (3,13)
305 : (4,3) x (1,1) = (1,16)
451:(5,1) \times (2,1) = (9,10)
451 : (5,1) x (1,2) = (3,17)
551 : (4,1) x (3,1) = (11,10)
 551 : (4,1) x (1,3) = (1,22)
 589 : (3,2) x (3,1) = (7,15)
 589 : (3,2) x (1,3) = (20,3)
355 : (7,1) x (1,1) = (6,11)
 395 : (5,3) x (1,1) = (2,17)
```

```
605:(6,1) \times (2,1) = (11,11) = 11(1,1)
605:(6,1) \times (1,2) = (4,19)
649:(5,2) \times (2,1) = (8,15)
649:(5,2) \times (1,2) = (1,24)
671 : (4,3) x (2,1) = (5,19)
671:(4,3) \times (1,2) = (23,2)
779:(5,1) \times (3,1) = (14,11)
779 : (5,1) x (1,3) = (2,25)
841 : (4,1) x (4,1) = (15,11)
841 : (4,1) x (1,4) = (29,0) = 29(1,0)
899 : (4,1) x (3,2) = (10,17)
899 : (4,1) x (2,3) = (5,23)
961 : (3,2) x (3,2) = (5,24)
961 : (3,2) x (2,3) = (31,0) = 31(1,0)
445:(8,1) \times (1,1) = (7,12)
475:(7,2) \times (1,1) = (5,15) = 5(1,3)
505:(5,4) \times (1,1) = (1,21)
781:(7,1) \times (2,1) = (13,12)
781 : (7,1) x (1,2) = (5,21)
869 : (5,3) x (2,1) = (7,20)
869 : (5,3) x (1,2) = (28,1)
1045:(6,1) \times (3,1) = (17,12)
1045 : (6,1) x (1,3) = (3,28)
1121:(5,2) \times (3,1) = (13,17)
1121:(5,2) \times (1,3) = (32,1)
1159:(4,3) \times (3,1) = (9,22)
1159 : (4,3) x (1,3) = (27,5)
1189:(5,1) \times (4,1) = (19,12)
1189:(5,1) \times (1,4) = (1,33)
1271:(5,1) \times (3,2) = (13,19)
1271:(5,1) \times (2,3) = (7,26)
545 : (9,1) x (1,1) = (8,13)
```

$CO[(1, 17, 2)] \times (1, 1) = (4, 10)$
$605:(7,3) \times (1,1) = (4,19)$
979 : (8,1) x (2,1) = (15,13)
979 : (8,1) x (1,2) = (6,23)
1045 : (7,2) x (2,1) = (12,17)
1045 : (7,2) x (1,2) = (3,28)
1111 : (5,4) x (2,1) = (6,25)
1111 : (5,4) x (1,2) = (29,3)
1349 : (7,1) x (3,1) = (20,13)
1349 : (7,1) x (1,3) = (4,31)
$1501: (5,3) \times (3,1) = (12,23)$
$1501:(5,3) \times (1,3) = (33,4)$
$1595:(6,1) \times (4,1) = (23,13)$
$1595:(6,1) \times (1,4) = (2,37)$
$1705 : (6,1) \times (3,2) = (16,21)$
$1705: (6,1) \times (2,3) = (9,29)$
$1711: (5,2) \times (4,1) = (18,19)$
$1711: (5,2) \times (1,4) = (37,3)$
$1829: (5,2) \times (3,2) = (11,28)$
1829 : (5,2) x (2,3) = (4,37)
1769 : (4,3) x (4,1) = (13,25)
1769 : (4,3) x (1,4) = (31,8)
1891 : (4,3) x (3,2) = (6,35)
1891 : (4,3) x (2,3) = (42,1)
1681 : (5,1) x (5,1) = (24,13)
1681 : (5,1) x (1,5) = (41,0) = 41(1,0)
####### N = 13 ##################################
655 : (10,1) x (1,1) = (9,14)
655 : (10,1) x (1,1) = (9,14) 695 : (9,2) x (1,1) = (7,17)
695 : (9,2) x (1,1) = (7,17)
695 : (9,2) x (1,1) = (7,17) 725 : (8,3) x (1,1) = (5,20) = 5(1,4)
695 : (9,2) x (1,1) = (7,17) 725 : (8,3) x (1,1) = (5,20) = 5(1,4) 745 : (7,4) x (1,1) = (3,23)
695 : (9,2) x (1,1) = (7,17) 725 : (8,3) x (1,1) = (5,20) = 5(1,4) 745 : (7,4) x (1,1) = (3,23) 755 : (6,5) x (1,1) = (1,26) 1199 : (9,1) x (2,1) = (17,14)
695 : (9,2) x (1,1) = (7,17) 725 : (8,3) x (1,1) = (5,20) = 5(1,4) 745 : (7,4) x (1,1) = (3,23) 755 : (6,5) x (1,1) = (1,26) 1199 : (9,1) x (2,1) = (17,14) 1199 : (9,1) x (1,2) = (7,25)
695 : (9,2) x (1,1) = (7,17) 725 : (8,3) x (1,1) = (5,20) = 5(1,4) 745 : (7,4) x (1,1) = (3,23) 755 : (6,5) x (1,1) = (1,26) 1199 : (9,1) x (2,1) = (17,14) 1199 : (9,1) x (1,2) = (7,25) 1331 : (7,3) x (2,1) = (11,22) = 11(1,2)
695 : (9,2) x (1,1) = (7,17) 725 : (8,3) x (1,1) = (5,20) = 5(1,4) 745 : (7,4) x (1,1) = (3,23) 755 : (6,5) x (1,1) = (1,26) 1199 : (9,1) x (2,1) = (17,14) 1199 : (9,1) x (1,2) = (7,25) 1331 : (7,3) x (2,1) = (11,22) = 11(1,2) 1331 : (7,3) x (1,2) = (1,35)
$695 : (9,2) \times (1,1) = (7,17)$ $725 : (8,3) \times (1,1) = (5,20) = 5(1,4)$ $745 : (7,4) \times (1,1) = (3,23)$ $755 : (6,5) \times (1,1) = (1,26)$ $1199 : (9,1) \times (2,1) = (17,14)$ $1199 : (9,1) \times (1,2) = (7,25)$ $1331 : (7,3) \times (2,1) = (11,22) = 11(1,2)$ $1331 : (7,3) \times (1,2) = (1,35)$ $1691 : (8,1) \times (3,1) = (23,14)$
$695 : (9,2) \times (1,1) = (7,17)$ $725 : (8,3) \times (1,1) = (5,20) = 5(1,4)$ $745 : (7,4) \times (1,1) = (3,23)$ $755 : (6,5) \times (1,1) = (1,26)$ $1199 : (9,1) \times (2,1) = (17,14)$ $1199 : (9,1) \times (1,2) = (7,25)$ $1331 : (7,3) \times (2,1) = (11,22) = 11(1,2)$ $1331 : (7,3) \times (1,2) = (1,35)$ $1691 : (8,1) \times (3,1) = (23,14)$ $1691 : (8,1) \times (1,3) = (5,34)$
$695: (9,2) \times (1,1) = (7,17)$ $725: (8,3) \times (1,1) = (5,20) = 5(1,4)$ $745: (7,4) \times (1,1) = (3,23)$ $755: (6,5) \times (1,1) = (1,26)$ $1199: (9,1) \times (2,1) = (17,14)$ $1199: (9,1) \times (1,2) = (7,25)$ $1331: (7,3) \times (2,1) = (11,22) = 11(1,2)$ $1331: (7,3) \times (1,2) = (1,35)$ $1691: (8,1) \times (3,1) = (23,14)$ $1691: (8,1) \times (1,3) = (5,34)$ $1805: (7,2) \times (3,1) = (19,19) = 19(1,1)$
$695: (9,2) \times (1,1) = (7,17)$ $725: (8,3) \times (1,1) = (5,20) = 5(1,4)$ $745: (7,4) \times (1,1) = (3,23)$ $755: (6,5) \times (1,1) = (1,26)$ $1199: (9,1) \times (2,1) = (17,14)$ $1199: (9,1) \times (1,2) = (7,25)$ $1331: (7,3) \times (2,1) = (11,22) = 11(1,2)$ $1331: (7,3) \times (1,2) = (1,35)$ $1691: (8,1) \times (3,1) = (23,14)$ $1691: (8,1) \times (1,3) = (5,34)$ $1805: (7,2) \times (3,1) = (19,19) = 19(1,1)$ $1805: (7,2) \times (1,3) = (1,41)$
$695: (9,2) \times (1,1) = (7,17)$ $725: (8,3) \times (1,1) = (5,20) = 5(1,4)$ $745: (7,4) \times (1,1) = (3,23)$ $755: (6,5) \times (1,1) = (1,26)$ $1199: (9,1) \times (2,1) = (17,14)$ $1199: (9,1) \times (1,2) = (7,25)$ $1331: (7,3) \times (2,1) = (11,22) = 11(1,2)$ $1331: (7,3) \times (1,2) = (1,35)$ $1691: (8,1) \times (3,1) = (23,14)$ $1691: (8,1) \times (1,3) = (5,34)$ $1805: (7,2) \times (3,1) = (19,19) = 19(1,1)$ $1805: (7,2) \times (1,3) = (1,41)$ $1919: (5,4) \times (3,1) = (11,29)$
$695: (9,2) \times (1,1) = (7,17)$ $725: (8,3) \times (1,1) = (5,20) = 5(1,4)$ $745: (7,4) \times (1,1) = (3,23)$ $755: (6,5) \times (1,1) = (1,26)$ $1199: (9,1) \times (2,1) = (17,14)$ $1199: (9,1) \times (1,2) = (7,25)$ $1331: (7,3) \times (2,1) = (11,22) = 11(1,2)$ $1331: (7,3) \times (1,2) = (1,35)$ $1691: (8,1) \times (3,1) = (23,14)$ $1691: (8,1) \times (3,1) = (5,34)$ $1805: (7,2) \times (3,1) = (19,19) = 19(1,1)$ $1805: (7,2) \times (1,3) = (1,41)$ $1919: (5,4) \times (1,3) = (34,7)$
$695: (9,2) \times (1,1) = (7,17)$ $725: (8,3) \times (1,1) = (5,20) = 5(1,4)$ $745: (7,4) \times (1,1) = (3,23)$ $755: (6,5) \times (1,1) = (1,26)$ $1199: (9,1) \times (2,1) = (17,14)$ $1199: (9,1) \times (1,2) = (7,25)$ $1331: (7,3) \times (2,1) = (11,22) = 11(1,2)$ $1331: (7,3) \times (1,2) = (1,35)$ $1691: (8,1) \times (3,1) = (23,14)$ $1691: (8,1) \times (1,3) = (5,34)$ $1805: (7,2) \times (3,1) = (19,19) = 19(1,1)$ $1805: (7,2) \times (3,1) = (11,29)$ $1919: (5,4) \times (1,3) = (34,7)$ $2059: (7,1) \times (4,1) = (27,14)$
$695: (9,2) \times (1,1) = (7,17)$ $725: (8,3) \times (1,1) = (5,20) = 5(1,4)$ $745: (7,4) \times (1,1) = (3,23)$ $755: (6,5) \times (1,1) = (1,26)$ $1199: (9,1) \times (2,1) = (17,14)$ $1199: (9,1) \times (1,2) = (7,25)$ $1331: (7,3) \times (2,1) = (11,22) = 11(1,2)$ $1331: (7,3) \times (1,2) = (1,35)$ $1691: (8,1) \times (3,1) = (23,14)$ $1691: (8,1) \times (1,3) = (5,34)$ $1805: (7,2) \times (3,1) = (19,19) = 19(1,1)$ $1805: (7,2) \times (1,3) = (1,41)$ $1919: (5,4) \times (1,3) = (34,7)$ $2059: (7,1) \times (4,1) = (27,14)$ $2059: (7,1) \times (1,4) = (3,41)$
$695: (9,2) \times (1,1) = (7,17)$ $725: (8,3) \times (1,1) = (5,20) = 5(1,4)$ $745: (7,4) \times (1,1) = (3,23)$ $755: (6,5) \times (1,1) = (1,26)$ $1199: (9,1) \times (2,1) = (17,14)$ $1199: (9,1) \times (1,2) = (7,25)$ $1331: (7,3) \times (2,1) = (11,22) = 11(1,2)$ $1331: (7,3) \times (1,2) = (1,35)$ $1691: (8,1) \times (3,1) = (23,14)$ $1691: (8,1) \times (3,1) = (23,14)$ $1805: (7,2) \times (3,1) = (19,19) = 19(1,1)$ $1805: (7,2) \times (1,3) = (1,41)$ $1919: (5,4) \times (1,3) = (34,7)$ $2059: (7,1) \times (1,4) = (3,41)$ $2001: (7,1) \times (3,2) = (19,23)$
$695: (9,2) \times (1,1) = (7,17)$ $725: (8,3) \times (1,1) = (5,20) = 5(1,4)$ $745: (7,4) \times (1,1) = (3,23)$ $755: (6,5) \times (1,1) = (1,26)$ $1199: (9,1) \times (2,1) = (17,14)$ $1199: (9,1) \times (1,2) = (7,25)$ $1331: (7,3) \times (2,1) = (11,22) = 11(1,2)$ $1331: (7,3) \times (1,2) = (1,35)$ $1691: (8,1) \times (3,1) = (23,14)$ $1691: (8,1) \times (3,1) = (23,14)$ $1805: (7,2) \times (3,1) = (19,19) = 19(1,1)$ $1805: (7,2) \times (1,3) = (1,41)$ $1919: (5,4) \times (3,1) = (11,29)$ $1919: (5,4) \times (1,3) = (34,7)$ $2059: (7,1) \times (1,4) = (3,41)$ $2201: (7,1) \times (3,2) = (19,23)$ $2201: (7,1) \times (2,3) = (11,32)$
$695: (9,2) \times (1,1) = (7,17)$ $725: (8,3) \times (1,1) = (5,20) = 5(1,4)$ $745: (7,4) \times (1,1) = (3,23)$ $755: (6,5) \times (1,1) = (1,26)$ $1199: (9,1) \times (2,1) = (17,14)$ $1199: (9,1) \times (1,2) = (7,25)$ $1331: (7,3) \times (2,1) = (11,22) = 11(1,2)$ $1331: (7,3) \times (1,2) = (1,35)$ $1691: (8,1) \times (3,1) = (23,14)$ $1691: (8,1) \times (1,3) = (5,34)$ $1805: (7,2) \times (3,1) = (19,19) = 19(1,1)$ $1805: (7,2) \times (1,3) = (1,41)$ $1919: (5,4) \times (1,3) = (34,7)$ $2059: (7,1) \times (4,1) = (27,14)$ $2059: (7,1) \times (1,4) = (3,41)$ $2201: (7,1) \times (2,3) = (11,32)$ $2291: (5,3) \times (4,1) = (17,26)$
$695: (9,2) \times (1,1) = (7,17)$ $725: (8,3) \times (1,1) = (5,20) = 5(1,4)$ $745: (7,4) \times (1,1) = (3,23)$ $755: (6,5) \times (1,1) = (1,26)$ $1199: (9,1) \times (2,1) = (17,14)$ $1199: (9,1) \times (1,2) = (7,25)$ $1331: (7,3) \times (2,1) = (11,22) = 11(1,2)$ $1331: (7,3) \times (1,2) = (1,35)$ $1691: (8,1) \times (3,1) = (23,14)$ $1691: (8,1) \times (1,3) = (5,34)$ $1805: (7,2) \times (3,1) = (19,19) = 19(1,1)$ $1805: (7,2) \times (1,3) = (1,41)$ $1919: (5,4) \times (1,3) = (34,7)$ $2059: (7,1) \times (4,1) = (27,14)$ $2059: (7,1) \times (1,4) = (3,41)$ $2011: (7,1) \times (3,2) = (19,23)$ $2201: (7,1) \times (2,3) = (11,32)$ $2291: (5,3) \times (1,4) = (38,7)$
$695: (9,2) \times (1,1) = (7,17)$ $725: (8,3) \times (1,1) = (5,20) = 5(1,4)$ $745: (7,4) \times (1,1) = (3,23)$ $755: (6,5) \times (1,1) = (1,26)$ $1199: (9,1) \times (2,1) = (17,14)$ $1199: (9,1) \times (1,2) = (7,25)$ $1331: (7,3) \times (2,1) = (11,22) = 11(1,2)$ $1331: (7,3) \times (1,2) = (135)$ $1691: (8,1) \times (3,1) = (23,14)$ $1691: (8,1) \times (3,1) = (23,14)$ $1691: (8,1) \times (1,3) = (5,34)$ $1805: (7,2) \times (3,1) = (19,19) = 19(1,1)$ $1805: (7,2) \times (1,3) = (14,1)$ $1919: (5,4) \times (3,1) = (11,29)$ $1919: (5,4) \times (1,3) = (34,7)$ $2059: (7,1) \times (4,1) = (27,14)$ $2059: (7,1) \times (1,4) = (3,41)$ $2201: (7,1) \times (2,3) = (11,32)$ $2291: (5,3) \times (4,1) = (17,26)$ $2291: (5,3) \times (3,2) = (9,37)$
$695 : (9,2) \times (1,1) = (7,17)$ $725 : (8,3) \times (1,1) = (5,20) = 5(1,4)$ $745 : (7,4) \times (1,1) = (3,23)$ $755 : (6,5) \times (1,1) = (1,26)$ $1199 : (9,1) \times (2,1) = (17,14)$ $1199 : (9,1) \times (1,2) = (7,25)$ $1331 : (7,3) \times (2,1) = (11,22) = 11(1,2)$ $1331 : (7,3) \times (1,2) = (1,35)$ $1691 : (8,1) \times (3,1) = (23,14)$ $1691 : (8,1) \times (3,1) = (23,14)$ $1691 : (8,1) \times (1,3) = (5,34)$ $1805 : (7,2) \times (3,1) = (19,19) = 19(1,1)$ $1805 : (7,2) \times (1,3) = (1,41)$ $1919 : (5,4) \times (3,1) = (11,29)$ $1919 : (5,4) \times (1,3) = (34,7)$ $2059 : (7,1) \times (4,1) = (27,14)$ $2059 : (7,1) \times (1,4) = (3,41)$ $2201 : (7,1) \times (3,2) = (19,23)$ $2201 : (7,1) \times (2,3) = (11,32)$ $2291 : (5,3) \times (4,1) = (17,26)$ $2291 : (5,3) \times (3,2) = (9,37)$ $2449 : (5,3) \times (2,3) = (1,48)$
$695 : (9,2) \times (1,1) = (7,17)$ $725 : (8,3) \times (1,1) = (5,20) = 5(1,4)$ $745 : (7,4) \times (1,1) = (3,23)$ $755 : (6,5) \times (1,1) = (1,26)$ $1199 : (9,1) \times (2,1) = (17,14)$ $1199 : (9,1) \times (1,2) = (7,25)$ $1331 : (7,3) \times (2,1) = (11,22) = 11(1,2)$ $1331 : (7,3) \times (1,2) = (1,35)$ $1691 : (8,1) \times (3,1) = (23,14)$ $1691 : (8,1) \times (1,3) = (5,34)$ $1805 : (7,2) \times (3,1) = (19,19) = 19(1,1)$ $1805 : (7,2) \times (1,3) = (1,41)$ $1919 : (5,4) \times (1,3) = (34,7)$ $2059 : (7,1) \times (4,1) = (27,14)$ $2059 : (7,1) \times (1,4) = (3,41)$ $2201 : (7,1) \times (2,3) = (11,32)$ $2291 : (5,3) \times (4,1) = (17,26)$ $2291 : (5,3) \times (3,2) = (9,37)$ $2449 : (5,3) \times (2,3) = (1,48)$ $2255 : (6,1) \times (5,1) = (29,14)$
$695 : (9,2) \times (1,1) = (7,17)$ $725 : (8,3) \times (1,1) = (5,20) = 5(1,4)$ $745 : (7,4) \times (1,1) = (3,23)$ $755 : (6,5) \times (1,1) = (1,26)$ $1199 : (9,1) \times (2,1) = (17,14)$ $1199 : (9,1) \times (1,2) = (7,25)$ $1331 : (7,3) \times (2,1) = (11,22) = 11(1,2)$ $1331 : (7,3) \times (1,2) = (1,35)$ $1691 : (8,1) \times (3,1) = (23,14)$ $1691 : (8,1) \times (3,1) = (23,14)$ $1691 : (8,1) \times (1,3) = (5,34)$ $1805 : (7,2) \times (3,1) = (19,19) = 19(1,1)$ $1805 : (7,2) \times (1,3) = (1,41)$ $1919 : (5,4) \times (3,1) = (11,29)$ $1919 : (5,4) \times (1,3) = (34,7)$ $2059 : (7,1) \times (4,1) = (27,14)$ $2059 : (7,1) \times (1,4) = (3,41)$ $2201 : (7,1) \times (3,2) = (19,23)$ $2201 : (7,1) \times (2,3) = (11,32)$ $2291 : (5,3) \times (4,1) = (17,26)$ $2291 : (5,3) \times (3,2) = (9,37)$ $2449 : (5,3) \times (2,3) = (1,48)$
$695 : (9,2) \times (1,1) = (7,17)$ $725 : (8,3) \times (1,1) = (5,20) = 5(1,4)$ $745 : (7,4) \times (1,1) = (3,23)$ $755 : (6,5) \times (1,1) = (1,26)$ $1199 : (9,1) \times (2,1) = (17,14)$ $1199 : (9,1) \times (1,2) = (7,25)$ $1331 : (7,3) \times (2,1) = (11,22) = 11(1,2)$ $1331 : (7,3) \times (1,2) = (1,35)$ $1691 : (8,1) \times (3,1) = (23,14)$ $1691 : (8,1) \times (1,3) = (5,34)$ $1805 : (7,2) \times (3,1) = (19,19) = 19(1,1)$ $1805 : (7,2) \times (1,3) = (1,41)$ $1919 : (5,4) \times (1,3) = (34,7)$ $2059 : (7,1) \times (4,1) = (27,14)$ $2059 : (7,1) \times (1,4) = (3,41)$ $2201 : (7,1) \times (2,3) = (11,32)$ $2291 : (5,3) \times (4,1) = (17,26)$ $2291 : (5,3) \times (3,2) = (9,37)$ $2449 : (5,3) \times (2,3) = (1,48)$ $2255 : (6,1) \times (5,1) = (29,14)$
$695 : (9,2) \times (1,1) = (7,17)$ $725 : (8,3) \times (1,1) = (5,20) = 5(1,4)$ $745 : (7,4) \times (1,1) = (3,23)$ $755 : (6,5) \times (1,1) = (1,26)$ $1199 : (9,1) \times (2,1) = (17,14)$ $1199 : (9,1) \times (1,2) = (7,25)$ $1331 : (7,3) \times (2,1) = (11,22) = 11(1,2)$ $1331 : (7,3) \times (1,2) = (1,35)$ $1691 : (8,1) \times (3,1) = (23,14)$ $1691 : (8,1) \times (1,3) = (5,34)$ $1805 : (7,2) \times (3,1) = (19,19) = 19(1,1)$ $1805 : (7,2) \times (1,3) = (1,41)$ $1919 : (5,4) \times (3,1) = (11,29)$ $1919 : (5,4) \times (1,3) = (34,7)$ $2059 : (7,1) \times (4,1) = (27,14)$ $2059 : (7,1) \times (1,4) = (3,41)$ $2059 : (7,1) \times (2,3) = (11,32)$ $2201 : (7,1) \times (2,3) = (11,32)$ $2291 : (5,3) \times (4,1) = (17,26)$ $2291 : (5,3) \times (3,2) = (9,37)$ $2449 : (5,3) \times (2,3) = (1,48)$ $2255 : (6,1) \times (5,1) = (29,14)$ $2255 : (6,1) \times (1,5) = (1,46)$

2501 : (4,3) x (5,1) = (17,28) 2501 : (4,3) x (1,5) = (35,11) $775:(11,1) \times (1,1) = (10,15) = 5(2,3)$ 895 : (7,5) x (1,1) = (2,27) 1441 : (10,1) x (2,1) = (19,15) 1441 : (10,1) x (1,2) = (8,27) $1529:(9,2) \times (2,1) = (16,19)$ 1529 : (9,2) x (1,2) = (5,32) 1595 : (8,3) x (2,1) = (13,23) 1595 : (8,3) x (1,2) = (2,37) 1639 : (7,4) x (2,1) = (10,27) 1639 : (7,4) x (1,2) = (39,1) $1661:(6,5) \times (2,1) = (7,31)$ $1661:(6,5) \times (1,2) = (35,4)$ 2071 : (9,1) x (3,1) = (26,15) 2071 : (9,1) x (1,3) = (6,37) 2299 : (7,3) x (3,1) = (18,25) 2299 : (7,3) x (1,3) = (45,2) 2581 : (8,1) x (4,1) = (31,15) 2581 : (8,1) x (1,4) = (4,45) 2759 : (8,1) x (3,2) = (22,25) 2759 : (8,1) x (2,3) = (13,35) $2755:(7,2) \times (4,1) = (26,21)$ 2755 : (7,2) x (1,4) = (51,1) 2945 : (7,2) x (3,2) = (17,32) 2945 : (7,2) x (2,3) = (8,43) $2929:(5,4) \times (4,1) = (16,33)$ $2929:(5,4) \times (1,4) = (39,11)$ 3131 : (5,4) x (3,2) = (7,46) 3131 : (5,4) x (2,3) = (53,2) 2911 : (7,1) x (5,1) = (34,15) 2911 : (7,1) x (1,5) = (2,51) 3239 : (5,3) x (5,1) = (22,29) 3239 : (5,3) x (1,5) = (43,10) 3025 : (6,1) x (6,1) = (35,15) = 5(7,3) $3025:(6,1) \times (1,6) = (55,0) = 55(1,0)$ 3245 : (6,1) x (5,2) = (28,23) 3245 : (6,1) x (2,5) = (7,47) 3355 : (6,1) x (4,3) = (21,31) 3355 : (6,1) x (3,4) = (14,39) 3481 : (5,2) x (5,2) = (21,32) 3481 : (5,2) x (2,5) = (59,0) = 59(1,0) 3599 : (5,2) x (4,3) = (14,41) 3599 : (5,2) x (3,4) = (7,50) 3721 : (4,3) x (4,3) = (7,51) $3721:(4,3) \times (3,4) = (61,0) = 61(1,0)$ 905 : (12,1) x (1,1) = (11,16) 955 : (11,2) x (1,1) = (9,19) 995 : (10,3) x (1,1) = (7,22) $1025: (9,4) \times (1,1) = (5,25) = 5(1,5)$ 1045 : (8,5) x (1,1) = (3,28)

1055 : (7,6) x (1,1) = (1,31)
1705 : (11,1) x (2,1) = (21,16)
1705 : (11,1) x (1,2) = (9,29)
1969 : (7,5) x (2,1) = (9,32)
1969 : (7,5) x (1,2) = (40,3)
2489 : (10,1) x (3,1) = (29,16)
2489 : (10,1) x (1,3) = (7,40)
2641 : (9,2) x (3,1) = (25,21)
2641 : (9,2) x (1,3) = (3,47)
2755 : (8,3) x (3,1) = (21,26)
2755 : (8,3) x (1,3) = (51,1)
2831 : (7,4) x (3,1) = (17,31)
2831 : (7,4) x (1,3) = (46,5)
2869 : (6,5) x (3,1) = (13,36)
2869 : (6,5) x (1,3) = (41,9)
3161 : (9,1) x (4,1) = (35,16)
3161 : (9,1) x (1,4) = (5,49)
3379 : (9,1) x (3,2) = (25,27)
3379 : (9,1) x (2,3) = (15,38)
3509 : (7,3) x (4,1) = (25,28)
3509 : (7,3) x (1,4) = (52,5)
3751 : (7,3) x (3,2) = (15,41)
3751 : (7,3) x (2,3) = (5,54)
3649 : (8,1) x (5,1) = (39,16)
3649 : (8,1) x (1,5) = (3,56)
3895 : (7,2) x (5,1) = (33,23)
3895 : (7,2) x (1,5) = (58,3)
4141 : (5,4) x (5,1) = (21,37)
4141 : (5,4) x (1,5) = (44,15)
3905 : (7,1) x (6,1) = (41,16)
3905 : (7,1) x (1,6) = (1,61)
4189 : (7,1) x (5,2) = (33,25)
4189 : (7,1) x (2,5) = (9,52)
4331 : (7,1) x (4,3) = (25,34)
$4331: (7,1) \times (3,4) = (17,43)$
$4345: (5,3) \times (6,1) = (27,32)$
$4345: (5,3) \times (1,6) = (48,13)$
$4661: (5,3) \times (5,2) = (19,43)$
4661 : (5,3) x (2,5) = (61,5) 4819 : (5,3) x (4,3) = (11,54)
4819 : (5,3) x (3,4) = (3,65) ####### N = 16 ##################################
1045 : (13,1) x (1,1) = (12,17)
$1043 : (13,1) \times (1,1) = (12,17)$ $1145 : (11,3) \times (1,1) = (8,23)$
$1205 : (9,5) \times (1,1) = (4,29)$
$1991: (12,1) \times (2,1) = (23,17)$
$1991: (12,1) \times (2,1) = (23,17)$ $1991: (12,1) \times (1,2) = (10,31)$
$2101 : (11,2) \times (2,1) = (20,21)$
$2101 : (11,2) \times (2,1) = (20,21)$ $2101 : (11,2) \times (1,2) = (7,36)$
$2101 \cdot (11,2) \times (1,2) = (7,30)$ $2189 \cdot (10,3) \times (2,1) = (17,25)$
$2189 : (10,3) \times (2,1) = (17,23)$ $2189 : (10,3) \times (1,2) = (4,41)$
$2255 : (9,4) \times (2,1) = (14,29)$
$2255 : (9,4) \times (2,1) = (14,25)$ $2255 : (9,4) \times (1,2) = (1,46)$

```
2299 : (8,5) x (2,1) = (11,33) = 11(1,3)
2299 : (8,5) x (1,2) = (45,2)
2321 : (7,6) x (2,1) = (8,37)
2321 : (7,6) x (1,2) = (41,5)
2945:(11,1) \times (3,1) = (32,17)
2945 : (11,1) x (1,3) = (8,43)
3401 : (7,5) x (3,1) = (16,37)
3401 : (7,5) x (1,3) = (47,8)
3799 : (10,1) x (4,1) = (39,17)
3799 : (10,1) x (1,4) = (6,53)
4061:(10,1) \times (3,2) = (28,29)
4061 : (10,1) x (2,3) = (17,41)
4031 : (9,2) x (4,1) = (34,23)
4031:(9,2) \times (1,4) = (1,62)
4309 : (9,2) x (3,2) = (23,36)
4309 : (9,2) x (2,3) = (12,49)
4205 : (8,3) x (4,1) = (29,29) = 29(1,1)
4205 : (8,3) x (1,4) = (59,4)
4495 : (8,3) x (3,2) = (18,43)
4495 : (8,3) x (2,3) = (7,57)
4321:(7,4) \times (4,1) = (24,35)
4321 : (7,4) x (1,4) = (53,9)
4619 : (7,4) x (3,2) = (13,50)
4619 : (7,4) x (2,3) = (2,65)
4379 : (6,5) x (4,1) = (19,41)
4379 : (6,5) x (1,4) = (47,14)
4681 : (6,5) x (3,2) = (8,57)
4681 : (6,5) x (2,3) = (64,3)
4469 : (9,1) x (5,1) = (44,17)
4469 : (9,1) x (1,5) = (4,61)
4961 : (7,3) x (5,1) = (32,31)
4961 : (7,3) x (1,5) = (59,8)
4895 : (8,1) x (6,1) = (47,17)
4895 : (8,1) x (1,6) = (2,67)
5251 : (8,1) x (5,2) = (38,27)
5251 : (8,1) x (2,5) = (11,57)
5429 : (8,1) x (4,3) = (29,37)
5429 : (8,1) x (3,4) = (20,47)
5225 : (7,2) x (6,1) = (40,25) = 5(8,5)
5225:(7,2) \times (1,6) = (65,5) = 5(13,1)
5605 : (7,2) x (5,2) = (31,36)
5605 : (7,2) x (2,5) = (4,69)
5795 : (7,2) x (4,3) = (22,47)
5795 : (7,2) x (3,4) = (13,58)
5555 : (5,4) x (6,1) = (26,41)
5555 : (5,4) x (1,6) = (49,19)
5959 : (5,4) x (5,2) = (17,54)
5959 : (5,4) x (2,5) = (63,10)
6161 : (5,4) x (4,3) = (8,67)
6161:(5,4) \times (3,4) = (77,1)
5041 : (7,1) x (7,1) = (48,17)
5041:(7,1) \times (1,7) = (71,0) = 71(1,0)
5609 : (7,1) x (5,3) = (32,35)
```

 $5609:(7,1) \times (3,5) = (16,53)$ 6241 : (5,3) x (5,3) = (16,57) $6241:(5,3) \times (3,5) = (79,0) = 79(1,0)$ $1195:(14,1) \times (1,1) = (13,18)$ 1255 : (13,2) x (1,1) = (11,21) $1345:(11,4) \times (1,1) = (7,27)$ $1405:(8,7) \times (1,1) = (1,36)$ $2299:(13,1) \times (2,1) = (25,18)$ 2299 : (13,1) x (1,2) = (11,33) = 11(1,3) 2519 : (11,3) x (2,1) = (19,26) 2519 : (11,3) x (1,2) = (5,43) $2651:(9,5) \times (2,1) = (13,34)$ $2651:(9,5) \times (1,2) = (50,1)$ 3439 : (12,1) x (3,1) = (35,18) 3439 : (12,1) x (1,3) = (9,46) 3629 : (11,2) x (3,1) = (31,23) 3629 : (11,2) x (1,3) = (5,53) 3781 : (10,3) x (3,1) = (27,28) 3781 : (10,3) x (1,3) = (1,60) 3895 : (9,4) x (3,1) = (23,33) 3895 : (9,4) x (1,3) = (58,3) $3971: (8,5) \times (3,1) = (19,38) = 19(1,2)$ 3971 : (8,5) x (1,3) = (53,7) $4009:(7,6) \times (3,1) = (15,43)$ 4009 : (7,6) x (1,3) = (48,11) $4495:(11,1) \times (4,1) = (43,18)$ 4495 : (11,1) x (1,4) = (7,57) $4805:(11,1) \times (3,2) = (31,31) = 31(1,1)$ $4805:(11,1) \times (2,3) = (19,44)$ 5191 : (7,5) x (4,1) = (23,42) 5191 : (7,5) x (1,4) = (54,13) 5549 : (7,5) x (3,2) = (11,59) $5549:(7,5) \times (2,3) = (73,1)$ 5371 : (10,1) x (5,1) = (49,18) 5371 : (10,1) x (1,5) = (5,66) 5699 : (9,2) x (5,1) = (43,25) $5699:(9,2) \times (1,5) = (74,1)$ 5945 : (8,3) x (5,1) = (37,32) 5945 : (8,3) x (1,5) = (67,7) $6109:(7,4) \times (5,1) = (31,39)$ $6109:(7,4) \times (1,5) = (60,13)$ 6191 : (6,5) x (5,1) = (25,46) $6191:(6,5) \times (1,5) = (53,19)$ 5995 : (9,1) x (6,1) = (53,18) 5995 : (9,1) x (1,6) = (3,73) $6431:(9,1) \times (5,2) = (43,29)$ $6431:(9,1) \times (2,5) = (13,62)$ 6649 : (9,1) x (4,3) = (33,40) $6649:(9,1) \times (3,4) = (23,51)$ 6655 : (7,3) x (6,1) = (39,34) $6655:(7,3) \times (1,6) = (66,11) = 11(6,1)$ 7139 : (7,3) x (5,2) = (29,47)

7139 : (7,3) x (2,5) = (83,1) 7381 : (7,3) x (4,3) = (19,60) 7381 : (7,3) x (3,4) = (9,73) $6319:(8,1) \times (7,1) = (55,18)$ 6319 : (8,1) x (1,7) = (1,78) 7031 : (8,1) x (5,3) = (37,38) 7031 : (8,1) x (3,5) = (19,58) $6745:(7,2) \times (7,1) = (47,27)$ $6745:(7,2) \times (1,7) = (72,7)$ 7505 : (7,2) x (5,3) = (29,49) 7505 : (7,2) x (3,5) = (11,71) 7171 : (5,4) x (7,1) = (31,45) 7171 : (5,4) x (1,7) = (54,23) $7979:(5,4) \times (5,3) = (13,71)$ 7979 : (5,4) x (3,5) = (82,5) $1355:(15,1) \times (1,1) = (14,19)$ $1475:(13,3) \times (1,1) = (10,25) = 5(2,5)$ $1555:(11,5) \times (1,1) = (6,31)$ $1595:(9,7) \times (1,1) = (2,37)$ $2629:(14,1) \times (2,1) = (27,19)$ 2629 : (14,1) x (1,2) = (12,35) $2761:(13,2) \times (2,1) = (24,23)$ $2761:(13,2) \times (1,2) = (9,40)$ 2959 : (11,4) x (2,1) = (18,31) 2959 : (11,4) x (1,2) = (3,50) 3091 : (8,7) x (2,1) = (9,43) 3091 : (8,7) x (1,2) = (47,6) $3971: (13,1) \times (3,1) = (38,19) = 19(2,1)$ $3971:(13,1) \times (1,3) = (10,49)$ 4351 : (11,3) x (3,1) = (30,29) 4351 : (11,3) x (1,3) = (2,63) $4579:(9,5) \times (3,1) = (22,39)$ 4579 : (9,5) x (1,3) = (59,6) $5249:(12,1) \times (4,1) = (47,19)$ 5249 : (12,1) x (1,4) = (8,61) 5611 : (12,1) x (3,2) = (34,33) $5611:(12,1) \times (2,3) = (21,47)$ 5539 : (11,2) x (4,1) = (42,25) 5539 : (11,2) x (1,4) = (3,70) 5921 : (11,2) x (3,2) = (29,40) 5921 : (11,2) x (2,3) = (16,55) 5771 : (10,3) x (4,1) = (37,31) $5771:(10,3) \times (1,4) = (73,2)$ $6169:(10,3) \times (3,2) = (24,47)$ 6169 : (10,3) x (2,3) = (11,63) $5945: (9,4) \times (4,1) = (32,37)$ 5945 : (9,4) x (1,4) = (67,7) 6355 : (9,4) x (3,2) = (19,54) $6355:(9,4) \times (2,3) = (6,71)$ 6061 : (8,5) x (4,1) = (27,43) $6061:(8,5) \times (1,4) = (61,12)$ $6479:(8,5) \times (3,2) = (14,61)$

6479 : (8,5) x (2,3) = (1,79)
6479 : (8,5) x (2,3) = (1,79)
6119 : (7,6) x (4,1) = (22,49)
6119 : (7,6) x (1,4) = (55,17)
6541 : (7,6) x (3,2) = (9,68)
6541 : (7,6) x (2,3) = (75,4)
6355 : (11,1) x (5,1) = (54,19)
6355 : (11,1) x (1,5) = (6,71)
7339 : (7,5) x (5,1) = (30,47)
7339 : (7,5) x (1,5) = (61,18)
$7205:(10,1) \times (6,1) = (59,19)$
$7205:(10,1) \times (1,6) = (4,79)$
$7729:(10,1) \times (5,2) = (48,31)$
$7729:(10,1) \times (2,5) = (15,67)$
7991 : (10,1) x (4,3) = (37,43)
7991 : (10,1) x (3,4) = (26,55)
7645 : (9,2) x (6,1) = (52,27)
7645 : (9,2) x (1,6) = (83,3)
$8201: (9,2) \times (5,2) = (41,40)$
$8201: (9,2) \times (2,5) = (8,79)$
$8479: (9,2) \times (4,3) = (30,53)$
$8479: (9,2) \times (3,4) = (19,66)$
$7975: (8,3) \times (6,1) = (45,35) = 5(9,7)$
$7975: (8,3) \times (1,6) = (75,10) = 5(15,2)$
8555 : (8,3) x (5,2) = (34,49)
8555 : (8,3) x (2,5) = (1,91)
8845 : (8,3) x (4,3) = (23,63)
8845 : (8,3) x (3,4) = (12,77)
8195 : (7,4) x (6,1) = (38,43)
8195 : (7,4) x (1,6) = (67,17)
8791 : (7,4) x (5,2) = (27,58)
8791 : (7,4) x (2,5) = (85,6)
9089 : (7,4) x (4,3) = (16,73)
9089 : (7,4) x (3,4) = (5,88)
8305 : (6,5) x (6,1) = (31,51)
8305 : (6,5) x (1,6) = (59,24)
8909 : (6,5) x (5,2) = (20,67)
8909 : (6,5) x (2,5) = (76,13)
9211 : (6,5) x (4,3) = (9,83)
9211 : (6,5) x (3,4) = (93,2)
7739 : (9,1) x (7,1) = (62,19)
7739 : (9,1) x (1,7) = (2,85)
8611 : (9,1) x (5,3) = (42,41)
8611 : (9,1) x (3,5) = (22,63)
8591 : (7,3) x (7,1) = (46,37)
8591 : (7,3) x (1,7) = (73,14)
9559 : (7,3) x (5,3) = (26,63)
9559 : (7,3) x (3,5) = (6,89)
7921 : (8,1) x (8,1) = (63,19)
7921 : (8,1) x (1,8) = (89,0) = 89(1,0)
8455 : (8,1) x (7,2) = (54,29)
8455 : (8,1) x (2,7) = (9,79)
8989 : (8,1) x (5,4) = (36,49)
5555 . (5,±) ^ (5,+) - (50,+5)

8989 : (8,1) x (4,5) = (27,59) 9025 : (7,2) x (7,2) = (45,40) = 5(9,8) 9025 : (7,2) x (2,7) = (95,0) = 95(1,0) 9595 : (7,2) x (5,4) = (27,62) 9595 : (7,2) x (4,5) = (18,73) 10201 : (5,4) x (5,4) = (9,88) $10201 : (5,4) \times (4,5) = (101,0) = 101(1,0)$ $1525:(16,1) \times (1,1) = (15,20) = 5(3,4)$ 1595 : (15,2) x (1,1) = (13,23) $1655:(14,3) \times (1,1) = (11,26)$ 1705 : (13,4) x (1,1) = (9,29) 1745 : (12,5) x (1,1) = (7,32) $1775:(11,6) \times (1,1) = (5,35) = 5(1,7)$ $1795:(10,7) \times (1,1) = (3,38)$ 1805 : (9,8) x (1,1) = (1,41) 2981 : (15,1) x (2,1) = (29,20) 2981 : (15,1) x (1,2) = (13,37) 3245 : (13,3) x (2,1) = (23,28) 3245 : (13,3) x (1,2) = (7,47) $3421:(11,5) \times (2,1) = (17,36)$ 3421 : (11,5) x (1,2) = (1,57) 3509 : (9,7) x (2,1) = (11,44) = 11(1,4) 3509 : (9,7) x (1,2) = (52,5) 4541 : (14,1) x (3,1) = (41,20) 4541 : (14,1) x (1,3) = (11,52) 4769 : (13,2) x (3,1) = (37,25) 4769 : (13,2) x (1,3) = (7,59) 5111 : (11,4) x (3,1) = (29,35) 5111 : (11,4) x (1,3) = (70,1) 5339 : (8,7) x (3,1) = (17,50) 5339 : (8,7) x (1,3) = (55,13) $6061:(13,1) \times (4,1) = (51,20)$ $6061:(13,1) \times (1,4) = (9,65)$ 6479 : (13,1) x (3,2) = (37,35) 6479 : (13,1) x (2,3) = (23,50) $6641:(11,3) \times (4,1) = (41,32)$ $6641:(11,3) \times (1,4) = (80,1)$ 7099 : (11,3) x (3,2) = (27,49) 7099 : (11,3) x (2,3) = (13,66) 6989 : (9,5) x (4,1) = (31,44) $6989: (9,5) \times (1,4) = (68,11)$ 7471 : (9,5) x (3,2) = (17,63) 7471 : (9,5) x (2,3) = (3,82) 7421 : (12,1) x (5,1) = (59,20) 7421 : (12,1) x (1,5) = (7,76) 7831 : (11,2) x (5,1) = (53,27) 7831 : (11,2) x (1,5) = (1,87) 8159 : (10,3) x (5,1) = (47,34) 8159 : (10,3) x (1,5) = (83,5) 8405 : (9,4) x (5,1) = (41,41) = 41(1,1) 8405 : (9,4) x (1,5) = (76,11)

...